Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-28T08:32:30.301Z Has data issue: false hasContentIssue false

Pattern formation in photo-controlled bioconvection

Published online by Cambridge University Press:  21 September 2023

Aina Ramamonjy
Affiliation:
Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS & Université Paris Cité, 75013 Paris, France
Philippe Brunet
Affiliation:
Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS & Université Paris Cité, 75013 Paris, France
Julien Dervaux*
Affiliation:
Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS & Université Paris Cité, 75013 Paris, France
*
Email address for correspondence: julien.dervaux@univ-paris-diderot.fr

Abstract

The model eukaryotic microalgae Chlamydomonas reinhardtii is well known for its ability to generate bioconvection flows that are associated to intricate concentration patterns. Recently, it was demonstrated that the propensity of these algae to move toward a light source – a phenomenon termed phototaxis – can be exploited to locally concentrate micro-organisms and induce (photo)-bioconvection in algal suspensions by inducing a localised excess of density. In the present study we show experimentally that a cell population in a thin liquid layer self-organises in the presence of a heterogeneous light field and displays remarkable symmetry-breaking instabilities that are ruled by both the width of the light beam and the photo-bioconvection Rayleigh number. Beside circular stable states, fingers, dendrites and wave instabilities are reported, quantified and classified in a general phase diagram. Next, we use lubrication theory to develop an asymptotic model for bioconvection in a thin liquid layer, that includes the influences of both gyrotaxis and phototaxis. We obtain a single nonlinear anisotropic diffusion–drift equation describing the spatiotemporal evolution of the depth-averaged algal population. Analytical and numerical solutions are presented and show a very good agreement with the experimental results. In particular, we show that the dendrite instability arises as a result of a subtle coupling between the nonlinearity of the phototactic response, the gyrotactic effect and the self-induced bioconvective flows. Such complex flow fields might find applications in photo-bioreactors, through the efficient stirring of the harvested biomass.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arrieta, J., Polin, M., Saleta-Piersanti, R. & Tuval, I. 2019 Light control of localized photobioconvection. Phys. Rev. Lett. 123, 158101.CrossRefGoogle ScholarPubMed
Bees, M.A. & Hill, N.A. 1997 Wavelengths of bioconvection patterns. J. Exp. Biol. 200, 15151526.CrossRefGoogle ScholarPubMed
Bees, M.A. & Hill, N.A. 1998 Linear bioconvection in a suspension of randomly swimming, gyrotactic micro-organisms. Phys. Fluids 10, 1864.CrossRefGoogle Scholar
Birikh, R.V. 1966 On thermocapillary convection in a horizontal layer of a liquid. J. Appl. Mech. Tech. Phys. 7, 4344.CrossRefGoogle Scholar
Bricard, A., Caussin, J.B., Desreumaux, N., Dauchot, O. & Bartolo, D. 2013 Emergence of macroscopic directed motion in populations of motile colloids. Nature (London) 503, 9598.CrossRefGoogle ScholarPubMed
Busse, F.H. & Clever, R.M. 1992 Three-dimensional convection in an inclined layer heated from below. J. Engng Math. 26 (1), 119.CrossRefGoogle Scholar
Chen, Y.-M. & Pearlstein, A.J. 1989 Stability of free-convection flows of variable-viscosity fluids in vertical and inclined slots. J. Fluid Mech. 198, 513541.CrossRefGoogle Scholar
Childress, S., Levandowksy, M. & Spiegel, E.A. 1975 Pattern formation in a suspension of swimming micro-organisms: equations and stability theory. J. Fluid Mech. 63, 591613.CrossRefGoogle Scholar
Dervaux, J., Capellazzi Resta, M. & Brunet, P. 2017 Light-controlled flows in active fluids. Nat. Phys. 13 (3), 306312.CrossRefGoogle Scholar
Dombrowski, L., Cisneros, L., Chatkaew, S., Goldstein, R.E. & Kessler, J.O. 2004 Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103.CrossRefGoogle ScholarPubMed
Dunkel, J., Heidenreich, S., Drescher, K., Wensink, H.H., Bär, M. & Goldstein, R.E. 2013 Fluid dynamics of bacterial turbulence. Phys. Rev. Lett. 110, 228102.CrossRefGoogle ScholarPubMed
Durham, W.M., Climent, E. & Stocker, R. 2011 Gyrotaxis in a steady vortical flow. Phys. Rev. Lett. 106, 238102.CrossRefGoogle Scholar
Fujimura, K. & Kelly, R.E. 1993 Mixed mode convection in an inclined slot. J. Fluid Mech. 246, 545568.CrossRefGoogle Scholar
Garcia, M., Berti, S., Peyla, P. & Rafaï, S. 2011 Random walk of a swimmer in a low-Reynolds-number medium. Phys. Rev. E 83, 035301.CrossRefGoogle Scholar
Garcia, X., Rafaï, S. & Peyla, P. 2013 Light control of the flow of phototactic microswimmer suspensions. Phys. Rev. Lett. 110, 138106.CrossRefGoogle ScholarPubMed
Ghorai, S. & Hill, N.A. 2005 Penetrative phototactic bioconvection. Phys. Fluids 19, 74101.Google Scholar
Giometto, A., Altermatt, F., Maritan, A., Stocker, R. & Rinaldo, A. 2015 Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis. Proc. Natl Acad. Sci. 112 (22), 70457050.CrossRefGoogle ScholarPubMed
Harris, E. 2009 The Chlamydomonas Sourcebook. Academic Press.Google Scholar
Hill, N.A., Pedley, T.J. & Kessler, J.O. 1989 Growth of bioconvection patterns in a suspension of gyrotactic micro-organisms in a layer of finite depth. J. Fluid Mech. 208, 509543.CrossRefGoogle Scholar
Hoyas, S., Herrero, H. & Mancho, A.M. 2004 Thermocapillar and thermogravitatory waves in a convection problem. Theor. Comput. Fluid Dyn. 18 (2), 309321.CrossRefGoogle Scholar
Janosi, I.M., Kessler, J.O. & Horvath, V.K. 1998 Onset of bioconvection in suspensions of bacillus subtilis. Phys. Rev. E 58, 47934800.CrossRefGoogle Scholar
Keller, E.F. & Segel, L.A. 1971 Model for chemotaxis. J. Theor. Biol. 30 (2), 225234.CrossRefGoogle ScholarPubMed
Kessler, J.O. 1985 Hydrodynamic focusing of motile algal cells. Nature 313, 208210.CrossRefGoogle Scholar
Lappa, M. 2009 Thermal Convection: Patterns, Evolution and Stability. John Wiley & Sons.CrossRefGoogle Scholar
Lauga, E. & Powers, T.R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.CrossRefGoogle Scholar
Pedley, T.J., Hill, N.A. & Kessler, J.O. 1988 The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms. J. Fluid Mech. 195, 223237.CrossRefGoogle Scholar
Pedley, T.J. & Kessler, J.O. 1990 A new continuum model for suspensions of gyrotactic micro-organisms. J. Fluid Mech. 212, 155182.CrossRefGoogle ScholarPubMed
Pedley, T.J. & Kessler, J.O. 1992 Hydrodynamic phenomena in suspensions of swimming micro-organisms. Annu. Rev. Fluid Mech. 24, 313358.CrossRefGoogle Scholar
Peng, L., Li, Y.-R., Shi, W.-Y. & Imaishi, N. 2007 Three-dimensional thermocapillary–buoyancy flow of silicone oil in a differentially heated annular pool. Intl J. Heat Mass Transfer 50 (5), 872880.CrossRefGoogle Scholar
Plesset, M.S. & Winet, H. 1974 Bioconvection patterns in swimming microorganism cultures as an example of Rayleigh–Taylor instability. Nature 248 (5447), 441443.CrossRefGoogle ScholarPubMed
Polin, M., Tuval, I., Drescher, K., Gollub, J.P. & Goldstein, R.E. 2009 Chlamydomonas swims with two gears in a eukaryotic version of run-and-tumble locomotion. Science 325, 487490.CrossRefGoogle Scholar
Rafaï, S., Jibuti, L. & Peyla, P. 2010 Effective viscosity of microswimmer suspensions. Phys. Rev. Lett. 104, 098102.CrossRefGoogle ScholarPubMed
Ramamonjy, A., Dervaux, J. & Brunet, P. 2022 Nonlinear phototaxis and instabilities in suspensions of light-seeking algae. Phys. Rev. Lett. 128, 258101.CrossRefGoogle ScholarPubMed
Reynolds, O. 1886 IV. On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil. Phil. Trans. R. Soc. Lond. 177, 157234.Google Scholar
Shadid, J.N. & Goldstein, R.J. 1990 Visualization of longitudinal convection roll instabilities in an inclined enclosure heated from below. J. Fluid Mech. 215, 6184.CrossRefGoogle Scholar
Tritton, D.J. 1988 Physical Fluid Dynamics. Clarendon.Google Scholar
Vincent, R. & Hill, N. 1996 Bioconvection in a suspension of phototactic algae. J. Fluid Mech. 327, 343371.CrossRefGoogle Scholar
Williams, C.R. & Bees, M.A. 2011 a Photo-gyrotactic bioconvection. J. Fluid Mech. 678, 4186.CrossRefGoogle Scholar
Williams, C.R. & Bees, M.A. 2011 b A tale of three taxes: photo-gyro-gravitactic bioconvection. J. Exp. Biol. 214, 23982408.CrossRefGoogle ScholarPubMed