Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T03:37:22.162Z Has data issue: false hasContentIssue false

Partial cavity flows. Part 1. Cavities forming on models without spanwise variation

Published online by Cambridge University Press:  22 June 2001

K. R. LABERTEAUX
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109-2121, USA
S. L. CECCIO
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109-2121, USA

Abstract

Partial cavities that formed on the vertices of wedges and on the leading edge of stationary hydrofoils were examined experimentally. The geometry of these test objects did not vary in the spanwise direction (i.e. two-dimensional). Open partial cavities formed on a series of two-dimensional wedges and on a plano-convex hydrofoil. These cavities terminated near the point of maximum cavity thickness, and small vapour-filled vortices were shed in the turbulent cavity wake. The turbulent flow in the wake of the open cavity was similar to the turbulent shear flow downstream of a rearward-facing step. Re-entrant flow was not observed in the cavity closure of open cavities, although recirculating flow associated with a region of flow separation was detected for some cases. Predictions of a two-dimensional free-streamline model of the cavitating wedge flows were compared to the experimentally observed cavities. The model predicted the profile of the open cavity only to the point of maximum cavity thickness. Examination of the flow field near the closure of the open cavities revealed adverse pressure gradients near the cavity closure. The pressure gradients around the open cavities were sufficient to cause large-scale condensation of the cavity. Unsteady re-entrant partial cavities formed on a two-dimensional NACA0009 hydrofoil. The interface of the unsteady closed cavities smoothly curved to form a re-entrant jet at the cavity terminus, and the re-entrant flow was directed upstream. The re-entrant flow impinged on the cavity interface and led to the periodic production of cloud cavitation. These cavities exhibited a laminar flow reattachment. The flow around the closed cavity was largely irrotational, while vorticity was created when the cloud cavitation collapsed downstream of the cavity. Examination of the flow field near closure of these cavities also revealed adverse pressure gradients near the partial cavity closure, but the rise in pressure did not lead to the premature condensation of the cavity.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)