Skip to main content Accessibility help
×
Home

Pair-sphere trajectories in finite-Reynolds-number shear flow

  • PANDURANG M. KULKARNI (a1) and JEFFREY F. MORRIS (a1)

Abstract

The pair trajectories of neutrally buoyant rigid spheres immersed in finite-inertia simple-shear flow are described. The trajectories are obtained using the lattice-Boltzmann method to solve the fluid motion, with Newtonian dynamics describing the sphere motions. The inertia is characterized by the shear-flow Reynolds number , where μ and ρ are the viscosity and density of the fluid respectively, is the shear rate and a is the radius of the larger of the pair of spheres in the case of unequal sizes; the majority of results presented are for pairs of equal radii. Reynolds numbers of 0 ≤ Re ≤ 1 are considered with a focus on inertia at Re = O(0.1). At finite inertia, the topology of the pair trajectories is altered from that predicted at Re = 0, as closed trajectories found in Stokes flow vanish and two new forms of trajectories are observed. These include spiralling and reversing trajectories in addition to largely undisturbed open trajectories. For Re = O(0.1), the limits of the various regions in pair space yielding open, reversing and spiralling trajectories are roughly defined.

Copyright

References

Hide All
Aidun, C. K., Lu, Y. & Ding, E. 1998 Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287311.
Batchelor, G. K. 1977 The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83, 97117.
Batchelor, G. K. & Green, J. T. 1972 The hydrodynamic interation of two small freely-moving spheres in a linear flow field. J. Fluid. Mech. 56, 375400.
Brady, J. F. & Bossis, G. 1988 Stokesian Dynamics. Annu. Rev. Fluid Mech. 20, 111157.
Brady, J. F. & Morris, J. F. 1997 Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid. Mech. 348, 103139.
Brenner, H. & O'Neill, M. E. 1972 On the Stokes resistance of multiparticle systems in a linear shear field. Chem. Engng Sci. 27, 1421.
Chun, B. & Ladd, A. J. C. 2006 Inertial migration of neutrally buoyant particles in a square duct: An investigation of multiple equilibrium positions. Phys. Fluids 18, 031704.
da Cunha, F. R. & Hinch, E. J. 1996 Shear–induced dispersion in a dilute suspension of rough spheres. J. Fluid Mech. 309, 211223.
Darabaner, C. L. & Mason, S. G. 1967 Particle motions in sheared suspensions XXII: Interaction of rigid spheres (Experimental). Rheol. Acta. 6, 273284.
Ding, E. & Aidun, C. K. 2000 The dynamics and scaling law for particles suspended in shear flow with inertia. J. Fluid Mech. 423, 317344.
Feng, J., Hu, H. H. & Joseph, D. D. 1994 Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows. J. Fluid Mech. 277, 271301.
Frisch, U., D'Humièrs, D., Hasslacher, B., Lallemand, P., Pomeau, Y. & Rivet, J. P. 1987 Lattice gas hydrodynamics in two and three dimension. Complex Systems 1, 649.
Higuera, F., Succi, S. & Benzi, R. 1989 Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9, 345349.
Hu, H. H. 1996 Direct simulation of flows of solid-liquid mixtures. Intl J. Multiphase Flow 22, 335352.
Hu, H. H., Joseph, D. D. & Crochet, M. J. 1992 Direct simulation of fluid particle motions. Theor. Comput. Fluid Dyn. 3, 285306.
Hu, H. H., Patankar, N. A. & Zhu, M. Y. 2001 Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique. J. Comput. Phys 169, 427462.
Huang, P. Y. & Joseph, D. D. 2000 Effects of shear thinning on migration of neutrally-buoyant particles in pressure driven flow of Newtonian and viscoelastic fluid. J. Non-Newtonian Fluid Mech. 90, 159185.
Jeffrey, D. J. 1992 The calculation of the low Reynolds number resistance functions for two unequal spheres. Phys. Fluids A 4, 1629.
Jeffrey, D. J. & Onishi, Y. 1984 Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid. Mech. 139, 261290.
Kim, S. & Mifflin, R. T. 1985 The resistance and mobility functions of two equal spheres in low-Reynolds-number flow. Phys. Fluids 28, 20332045.
Koch, D. L. & Hill, R. J. 2001 Inertial effects in suspension and porous media flows. Annu. Rev. Fluid Mech. 33, 619647.
Kossack, C. & Acrivos, A. 1974 Steady simple shear flow past a cirular cylinder at moderate Reynolds number: a numerical solution. J. Fluid Mech. 66, 353376.
Kromkamp, J., van den Ende, D. T. M., Kandhai, D., van der Sman, R. G. M. & Boom, R. M. 2005 Shear-induced self-diffusion and microstructure in non-Brownian suspensions at non-zero Reynolds number. J. Fluid Mech. 529, 253278.
Ladd, A. J. C. 1988 Hydrodynamic interactions in a suspension of spherical particles. J. Chem. Phys. 88, 50515063.
Ladd, A. J. C. 1994 a Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285309.
Ladd, A. J. C. 1994 b Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311339.
Ladd, A. J. C. & Verberg, R. 2001 Lattice-Boltzmann simulations of particle-fluid suspensions. J. Statist. Phys. 104, 1191–1151.
Leal, L. G. 1992 Laminar Flow and Convective Transport Processes. Butterworth-Heinemann.
Lin, C. J., Lee, K. J. & Sather, N. F. 1970 a Slow motion of two spheres in a shear field. J. Fluid. Mech. 43, 3547.
Lin, C. J., Peery, J. H. & Schowalter, W. R. 1970 b Simple shear flow round a rigid sphere: Inertial effects and suspension rheology. J. Fluid Mech. 44, 117.
Matas, J., Glezer, V., Guazzelli, E. & Morris, J. F. 2004 Trains of particles in finite-Reynolds-number pipe flow. Phys. Fluids 16, 41924195.
Mikulencak, D. R. & Morris, J. F. 2004 Stationary shear flow around fixed and free bodies at finite Reynolds number. J. Fluid Mech. 520, 215242.
Nguyen, N. Q. & Ladd, A. J. C. 2002 Lubrication corrections for lattice-Boltzmann simulation of particle suspensions. Phys. Rev. E 66, 046708.
Nirschl, H., Dwyer, H. A. & Denk, V. 1995 Three-dimensional calculations of the simple shear flow around a single particle betwen two moving walls. J. Fluid Mech. 283, 273285.
Poe, G. G. & Acrivos, A. 1975 Closed streamline flows past rotating single spheres and cylinders: inertia effects. J. Fluid. Mech. 72, 605623.
Robertson, C. R. & Acrivos, A. 1970 Low Reynolds number shear flow past a rotating circular cylinder. Part 1. Momentum transfer. J. Fluid Mech. 40, 685703.
Subramanian, G. & Brady, J. F. 2006 Trajectory analysis for non-Brownian inertial suspensions in simple shear flow. J. Fluid Mech. 559, 151203.
Subramanian, G. & Koch, D. L. 2006 a Centrifugal forces alter streamline topology and greatly enhance the rate of heat and mass transfer from neutrally buoyant particles to a shear flow. Phys. Rev. Lett 96, 134503.
Subramanian, G. & Koch, D. L. 2006 b Inertial effects on the transfer of heat or mass from neutrally buoyant spheres in a steady linear velocity field. Phys. Fluids 18, 073302.
Swaminathan, T. N., Mukundakrishnan, K. & Hu, H. H. 2006 Sedimentation of an ellipsoid inside an infinitely long tube at low and intermediate Reynolds numbers. J. Fluid Mech. 551, 357385.
Wakiya, S., Darabaner, C. L. & Mason, S. G. 1967 Particle motions in sheared suspensions XXI: Interaction of rigid spheres (Theoretical). Rheol. Acta. 6, 273284.
Zarraga, I. E. & Leighton, D. T. 2001 Normal stress and diffusion in a dilute suspension of hard spheres undergoing simple shear. Phys. Fluids 13, 565577.
Zettner, C. M. & Yoda, M. 2001 The circular cylinder in simple shear at moderate Reynolds number: An experimental study. Exps. Fluids 30, 346353.
Zurita-Gotor, M., Bławzdziewicz, J. & Wajnryb, E. 2007 Swapping trajectories: a new cross-streamline particle migration mechanism in a dilute suspension of spheres. J. Fluid Mech. 592, 447469.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

Pair-sphere trajectories in finite-Reynolds-number shear flow

  • PANDURANG M. KULKARNI (a1) and JEFFREY F. MORRIS (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.