Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-27T10:00:52.088Z Has data issue: false hasContentIssue false

Order–disorder transitions within deformable particle suspensions in planar Poiseuille flow

Published online by Cambridge University Press:  12 January 2024

Paul C. Millett*
Affiliation:
Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72703, USA
*
Email address for correspondence: pmillett@uark.edu

Abstract

Three-dimensional simulations of the ordering of elastic capsule suspensions within planar Poiseuille flow channels are reported. The simulations utilize the immersed boundary method coupled with the lattice Boltzmann method to capture the complex flow-induced capsule deformations and hydrodynamic interactions within the suspensions. A parametric study is presented whereby the confinement ratio and the particle deformability are varied independently within a two-dimensional range relevant to this ordering phenomenon. The initial distribution of capsules is random, and the simulations evolve the system from a disordered state to an ordered one, while an order parameter that quantifies the fraction of capsules belonging to one-dimensional train assemblies is computed throughout time. A monotonic increase in ordering is observed with increasing deformability. However, an optimal confinement ratio is identified corresponding to a peak in the order parameter. This peak is attributed to the competition between increasing long-range capsule attractions and decreasing in-plane capsule density (with fixed volume fraction) as the confinement ratio increases. Simulations are also performed to understand how dispersity in capsule size and deformability impact the degree of ordering. It is shown that ordering is quite sensitive to dispersity in capsule size, and much less sensitive to dispersity in deformability. Overall, the results provide important insights for the design of microfluidic devices.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abkarian, M., Faivre, M., Horton, R., Smistrup, K., Best-Popescu, C.A. & Stone, H.A. 2008 Cellular-scale hydrodynamics. Biomed. Mater. 3 (3), 034011.CrossRefGoogle ScholarPubMed
Aouane, O., Farutin, A., Thiébaud, M., Benyoussef, A., Wagner, C. & Misbah, C. 2017 Hydrodynamic pairing of soft particles in a confined flow. Phys. Rev. Fluids 2 (6), 063102.CrossRefGoogle Scholar
Aouane, O., Scagliarini, A. & Harting, J. 2021 Structure and rheology of suspensions of spherical strain-hardening capsules. J. Fluid Mech. 911, A11.CrossRefGoogle Scholar
Baron, M., Bławzdziewicz, J. & Wajnryb, E. 2008 Hydrodynamic crystals: collective dynamics of regular arrays of spherical particles in a parallel-wall channel. Phys. Rev. Lett. 100 (17), 174502.CrossRefGoogle Scholar
Beatus, T., Bar-Ziv, R. & Tlusty, T. 2007 Anomalous microfluidic phonons induced by the interplay of hydrodynamic screening and incompressibility. Phys. Rev. Lett. 99 (12), 124502.CrossRefGoogle ScholarPubMed
Beatus, T., Bar-Ziv, R.H. & Tlusty, T. 2012 The physics of 2D microfluidic droplet ensembles. Phys. Rep. 516 (3), 103145.CrossRefGoogle Scholar
Beatus, T., Tlusty, T. & Bar-Ziv, R. 2006 Phonons in a one-dimensional microfluidic crystal. Nat. Phys. 2 (11), 743748.CrossRefGoogle Scholar
Bhattacharya, S. 2008 Cooperative motion of spheres arranged in periodic grids between two parallel walls. J. Chem. Phys. 128 (7), 074709.CrossRefGoogle ScholarPubMed
Blawzdziewicz, J., Goodman, R.H., Khurana, N., Wajnryb, E. & Young, Y.N. 2010 Nonlinear hydrodynamic phenomena in Stokes flow regime. Physica D 239 (14), 12141224.CrossRefGoogle Scholar
Bryngelson, S.H. & Freund, J.B. 2016 Capsule-train stability. Phys. Rev. Fluids 1 (3), 033201.CrossRefGoogle Scholar
Chen, D., Lin, J. & Hu, X. 2021 Research on the inertial migration characteristics of bi-disperse particles in channel flow. Appl. Sci. 11 (19), 8800.CrossRefGoogle Scholar
Cheng, X., Xu, X., Rice, S.A., Dinner, A.R. & Cohen, I. 2012 Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow. Proc. Natl Acad. Sci. USA 109 (1), 6367.CrossRefGoogle Scholar
Cui, B., Diamant, H. & Lin, B. 2002 Screened hydrodynamic interaction in a narrow channel. Phys. Rev. Lett. 89 (18), 188302.CrossRefGoogle Scholar
Cui, B., Diamant, H., Lin, B. & Rice, S.A. 2004 Anomalous hydrodynamic interaction in a quasi-two-dimensional suspension. Phys. Rev. Lett. 92 (25), 258301.CrossRefGoogle Scholar
Gharib, G., Bütün, İ., Muganlı, Z., Kozalak, G., Namlı, İ., Sarraf, S.S., Ahmadi, V.E., Toyran, E., van Wijnen, A.J. & Koşar, A. 2022 Biomedical applications of microfluidic devices: a review. Biosensors 12 (11), 1023.CrossRefGoogle ScholarPubMed
Griggs, A.J., Zinchenko, A.Z. & Davis, R.H. 2007 Low-Reynolds-number motion of a deformable drop between two parallel plane walls. Intl J. Multiphase Flow 33 (2), 182206.CrossRefGoogle Scholar
Guo, Z., Zheng, C. & Shi, B. 2002 Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65 (4), 046308.CrossRefGoogle ScholarPubMed
Hashimoto, M., Garstecki, P., Stone, H.A. & Whitesides, G.M. 2008 Interfacial instabilities in a microfluidic Hele-Shaw cell. Soft Matt. 4 (7), 14031413.CrossRefGoogle Scholar
Ishida, S., Matsumoto, R., Matsunaga, D. & Imai, Y. 2022 Particle segregation using crystal-like structure of capsules in wall-bounded shear flow. Phys. Rev. Fluids 7 (6), 063601.CrossRefGoogle Scholar
Iss, C., Midou, D., Moreau, A., Held, D., Charrier, A., Mendez, S., Viallat, A. & Helfer, E. 2019 Self-organization of red blood cell suspensions under confined 2D flows. Soft Matt. 15 (14), 29712980.CrossRefGoogle ScholarPubMed
Janssen, P.J.A., Baron, M.D., Anderson, P.D., Blawzdziewicz, J., Loewenberg, M. & Wajnryb, E. 2012 Collective dynamics of confined rigid spheres and deformable drops. Soft Matt. 8 (28), 74957506.CrossRefGoogle Scholar
Kohale, S.C. & Khare, R. 2010 Molecular dynamics simulation study of friction force and torque on a rough spherical particle. J. Chem. Phys. 132 (23), 234706.CrossRefGoogle ScholarPubMed
Krüger, T., Kaoui, B. & Harting, J. 2014 Interplay of inertia and deformability on rheological properties of a suspension of capsules. J. Fluid Mech. 751, 725745.CrossRefGoogle Scholar
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. & Viggen, E.M. 2017 The Lattice Boltzmann Method: Principles and Practice. Springer.CrossRefGoogle Scholar
Krüger, T., Varnik, F. & Raabe, D. 2011 Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Comput. Maths Applics. 61 (12), 34853505.CrossRefGoogle Scholar
Ladd, A.J.C. 1994 Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285309.CrossRefGoogle Scholar
Leichtberg, S., Pfeffer, R. & Weinbaum, S. 1976 Stokes flow past finite coaxial clusters of spheres in a circular cylinder. Intl J. Multiphase Flow 3 (2), 147169.CrossRefGoogle Scholar
Li, W. & Müller, M. 2015 Defects in the self-assembly of block copolymers and their relevance for directed self-assembly. Annu. Rev. Chem. Biomol. Engng 6 (1), 187216.CrossRefGoogle ScholarPubMed
Li, W., et al. 2018 Microfluidic fabrication of microparticles for biomedical applications. Chem. Soc. Rev. 47 (15), 56465683.CrossRefGoogle ScholarPubMed
Liao, C.-T., Wu, Y.-F., Chien, W., Huang, J.-R. & Chen, Y.-L. 2017 Modeling shear-induced particle ordering and deformation in a dense soft particle suspension. J. Phys.: Condens. Matter 29 (43), 435101.Google Scholar
Ling, S.D., Geng, Y., Chen, A., Du, Y. & Xu, J. 2020 Enhanced single-cell encapsulation in microfluidic devices: from droplet generation to single-cell analysis. Biomicrofluidics 14 (6), 061508.CrossRefGoogle ScholarPubMed
Liron, N. & Mochon, S. 1976 Stokes flow for a Stokeslet between two parallel flat plates. J. Engng Maths 10 (4), 287303.CrossRefGoogle Scholar
Liu, L., Xiang, N. & Ni, Z. 2020 Droplet-based microreactor for the production of micro/nano-materials. Electrophoresis 41 (10–11), 833851.CrossRefGoogle ScholarPubMed
McWhirter, J.L., Noguchi, H. & Gompper, G. 2009 Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc. Natl Acad. Sci. USA 106 (15), 60396043.CrossRefGoogle ScholarPubMed
Millett, P.C. 2023 Rheology and structure of elastic capsule suspensions within rectangular channels. Soft Matt. 19 (9), 17591771.CrossRefGoogle ScholarPubMed
Owen, B. & Krüger, T. 2022 Numerical investigation of the formation and stability of homogeneous pairs of soft particles in inertial microfluidics. J. Fluid Mech. 937, A4.CrossRefGoogle ScholarPubMed
Patel, K. & Stark, H. 2021 A pair of particles in inertial microfluidics: effect of shape, softness, and position. Soft Matt. 17 (18), 48044817.CrossRefGoogle ScholarPubMed
Pozrikidis, C. 2005 Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids 17 (3), 031503.CrossRefGoogle Scholar
Raven, J.-P. & Marmottant, P. 2009 Microfluidic crystals: dynamic interplay between rearrangement waves and flow. Phys. Rev. Lett. 102 (8), 084501.CrossRefGoogle ScholarPubMed
Schaaf, C. & Stark, H. 2017 Inertial migration and axial control of deformable capsules. Soft Matt. 13 (19), 35443555.CrossRefGoogle ScholarPubMed
Schaaf, C. & Stark, H. 2020 Particle pairs and trains in inertial microfluidics. Eur. Phys. J. E 43 (8), 50.CrossRefGoogle ScholarPubMed
Shen, Z., Fischer, T.M., Farutin, A., Vlahovska, P.M., Harting, J. & Misbah, C. 2018 Blood crystal: emergent order of red blood cells under wall-confined shear flow. Phys. Rev. Lett. 120 (26), 268102.CrossRefGoogle ScholarPubMed
Singha, S., Malipeddi, A.R., Zurita-Gotor, M., Sarkar, K., Shen, K., Loewenberg, M., Migler, K.B. & Blawzdziewicz, J. 2019 Mechanisms of spontaneous chain formation and subsequent microstructural evolution in shear-driven strongly confined drop monolayers. Soft Matt. 15 (24), 48734889.CrossRefGoogle ScholarPubMed
Skalak, R., Tozeren, A., Zarda, R.P. & Chien, S. 1973 Strain energy function of red blood cell membranes. Biophys. J. 13 (3), 245264.CrossRefGoogle ScholarPubMed
Thota, K., Owen, B. & Krüger, T. 2023 Numerical study of the formation and stability of a pair of particles of different sizes in inertial microfluidics. Phys. Fluids 35 (3), 032001.CrossRefGoogle Scholar
Tomaiuolo, G., Lanotte, L., Ghigliotti, G., Misbah, C. & Guido, S. 2012 Red blood cell clustering in Poiseuille microcapillary flow. Phys. Fluids 24 (5), 051903.CrossRefGoogle Scholar
Wang, H. & Skalak, R. 1969 Viscous flow in a cylindrical tube containing a line of spherical particles. J. Fluid Mech. 38 (1), 7596.CrossRefGoogle Scholar
Supplementary material: File

Millett supplementary material

Millett supplementary material
Download Millett supplementary material(File)
File 4.7 MB