Skip to main content Accessibility help
×
Home

On velocity gradient dynamics and turbulent structure

  • J. M. Lawson (a1) and J. R. Dawson (a2)

Abstract

The statistics of the velocity gradient tensor $\unicode[STIX]{x1D63C}=\boldsymbol{{\rm\nabla}}\boldsymbol{u}$ , which embody the fine scales of turbulence, are influenced by turbulent ‘structure’. Whilst velocity gradient statistics and dynamics have been well characterised, the connection between structure and dynamics has largely focused on rotation-dominated flow and relied upon data from numerical simulation alone. Using numerical and spatially resolved experimental datasets of homogeneous turbulence, the role of structure is examined for all local (incompressible) flow topologies characterisable by $\unicode[STIX]{x1D63C}$ . Structures are studied through the footprints they leave in conditional averages of the $Q=-\text{Tr}(\unicode[STIX]{x1D63C}^{2})/2$ field, pertinent to non-local strain production, obtained using two complementary conditional averaging techniques. The first, stochastic estimation, approximates the $Q$ field conditioned upon $\unicode[STIX]{x1D63C}$ and educes quantitatively similar structure in both datasets, dissimilar to that of random Gaussian velocity fields. Moreover, it strongly resembles a promising model for velocity gradient dynamics recently proposed by Wilczek & Meneveau (J. Fluid Mech., vol. 756, 2014, pp. 191–225), but is derived under a less restrictive premise, with explicitly determined closure coefficients. The second technique examines true conditional averages of the $Q$ field, which is used to validate the stochastic estimation and provide insights towards the model’s refinement. Jointly, these approaches confirm that vortex tubes are the predominant feature of rotation-dominated regions and additionally show that shear layer structures are active in strain-dominated regions. In both cases, kinematic features of these structures explain alignment statistics of the pressure Hessian eigenvectors and why local and non-local strain production act in opposition to each other.

Copyright

Corresponding author

Email address for correspondence: jml70@cam.ac.uk

References

Hide All
Adrian, R. J. 1994 Stochastic estimation of conditional structure: a review. Appl. Sci. Res. 53 (3–4), 291303.
Alfonsi, G. 2006 Coherent structures of turbulence: methods of education and results. Appl. Mech. Rev. 59 (6), 307323.
Batchelor, G. K. 1951 Pressure fluctuations in isotropic turbulence. Math. Proc. Camb. Phil. Soc. 47, 359374.
Bermejo-Moreno, I., Pullin, D. I. & Horiuti, K. 2009 Geometry of enstrophy and dissipation, grid resolution effects and proximity issues in turbulence. J. Fluid Mech. 620, 121166.
Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1, 497504.
Biferale, L. & Procaccia, I. 2005 Anisotropy in turbulent flows and in turbulent transport. Phys. Rep. 414 (23), 43164.
Bodenschatz, E., Malinowski, S. P., Shaw, R. A. & Stratmann, F. 2010 Can we understand clouds without turbulence? Science 327 (5968), 970971.
Bonnet, J.-P. & Delville, J. 2001 Review of coherent structures in turbulent free shear flows and their possible influence on computational methods. Flow Turbul. Combust. 66 (4), 333353.
Cantwell, B. J. 1992 Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. Fluids A 4 (4), 782793.
Cardesa, J. I., Mistry, D., Gan, L. & Dawson, J. R. 2013 Invariants of the reduced velocity gradient tensor in turbulent flows. J. Fluid Mech. 716, 597615.
Chacin, J. M. & Cantwell, B. J. 2000 Dynamics of a low Reynolds number turbulent boundary layer. J. Fluid Mech. 404, 87115.
Chevillard, L., Lévêque, E., Taddia, F., Meneveau, C., Yu, H. & Rosales, C. 2011 Local and nonlocal pressure Hessian effects in real and synthetic fluid turbulence. Phys. Fluids 23 (9), 095108.
Chevillard, L., Meneveau, C., Biferale, L. & Toschi, F. 2008 Modeling the pressure Hessian and viscous Laplacian in turbulence: comparisons with direct numerical simulation and implications on velocity gradient dynamics. Phys. Fluids 20 (10), 101504.
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow fields. Phys. Fluids A 2 (5), 765777.
Chun, J., Koch, D. L., Rani, S. L., Ahluwalia, A. & Collins, L. R. 2005 Clustering of aerosol particles in isotropic turbulence. J. Fluid Mech. 536, 219251.
Elsinga, G. E. & Marusic, I. 2010a Evolution and lifetimes of flow topology in a turbulent boundary layer. Phys. Fluids 22 (1), 015102.
Elsinga, G. E. & Marusic, I. 2010b Universal aspects of small-scale motions in turbulence. J. Fluid Mech. 662, 514539.
Foucaut, J. M., Carlier, J. & Stanislas, M. 2004 PIV optimization for the study of turbulent flow using spectral analysis. Meas. Sci. Technol. 15 (6), 10461058.
Ganapathisubramani, B., Lakshminarasimhan, K. & Clemens, N. T. 2008 Investigation of three-dimensional structure of fine scales in a turbulent jet by using cinematographic stereoscopic particle image velocimetry. J. Fluid Mech. 598, 141175.
Girimaji, S. S. & Pope, S. B. 1990 A diffusion model for velocity gradients in turbulence. Phys. Fluids A 2 (2), 242256.
Hunt, J. C. R., Ishihara, T., Worth, N. A. & Kaneda, Y. 2014 Thin shear layer structures in high Reynolds number turbulence. Flow, Turbul. Combust. 92 (3), 607649.
Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K. & Uno, A. 2007 Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics. J. Fluid Mech. 592, 335366.
Jiménez, J. & Wray, A. A. 1998 On the characteristics of vortex filaments in isotropic turbulence. J. Fluid Mech. 373, 255285.
Jiménez, J., Wray, A. A., Saffman, P. G. & Rogallo, R. S. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 6590.
Kalelkar, C. 2006 Statistics of pressure fluctuations in decaying isotropic turbulence. Phys. Rev. E 73 (4), 046301.
Kerr, R. M. 1985 Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 3158.
Lawson, J. M. & Dawson, J. R. 2014 A scanning PIV method for fine-scale turbulence measurements. Exp. Fluids 55, 1857.
Leung, T., Swaminathan, N. & Davidson, P. A. 2012 Geometry and interaction of structures in homogeneous isotropic turbulence. J. Fluid Mech. 710, 453481.
Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A. & Eyink, G. 2008 A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9, 129.
Lüthi, B., Holzner, M. S. & Tsinober, A. 2009 Expanding the $Q$ $R$ space to three dimensions. J. Fluid Mech. 641, 497507.
Martin, J., Ooi, A., Chong, M. S. & Soria, J. 1998 Dynamics of the velocity gradient tensor invariants in isotropic turbulence. Phys. Fluids 10 (9), 23362346.
Meneveau, C. 2011 Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 43 (1), 219245.
Moisy, F. & Jiménez, J. 2004 Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 513, 111133.
Mui, R. C. Y., Dommermuth, D. G. & Novikov, E. A. 1996 Conditionally averaged vorticity field and turbulence modeling. Phys. Rev. E 53, 23552359.
Mullin, J. A. & Dahm, W. J. A. 2006 Dual-plane stereo particle image velocimetry measurements of velocity gradient tensor fields in turbulent shear flow. I: Accuracy assessments. Phys. Fluids 18 (3), 035101.
Nelkin, M. 1994 Universality and scaling in fully developed turbulence. Adv. Phys. 43 (2), 143181.
Nie, Q. & Tanveer, S. 1999 A note on third order structure functions in turbulence. Proc. R. Soc. Lond. A 455 (1985), 16151635.
Nomura, K. K. & Post, G. K. 1998 The structure and dynamics of vorticity and rate of strain in incompressible homogeneous turbulence. J. Fluid Mech. 377, 6597.
Ohkitani, K. 1993 Eigenvalue problems in three dimensional Euler flows. Phys. Fluids A 5 (10), 25702572.
Ohkitani, K. & Kishiba, S. 1995 Nonlocal nature of vortex stretching in an inviscid fluid. Phys. Fluids 7 (2), 411421.
Ooi, A., Martin, J., Soria, J. & Chong, M. S. 1999 A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech. 381, 141174.
Pope, S. 2000 Turbulent Flows. Cambridge University Press.
Pumir, A. 1994 A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient. Phys. Fluids 6 (6), 21182132.
Rabey, P. K., Wynn, A. & Buxton, O. R. H. 2015 The kinematics of the reduced velocity gradient tensor in a fully developed turbulent free shear flow. J. Fluid Mech. 767, 627658.
She, Z.-S., Jackson, E. & Orszag, S. A. 1991 Structure and dynamics of homogeneous turbulence: models and simulations. Proc. R. Soc. Lond. A 434 (1890), 101124.
Siggia, E. D. 1981 Invariants for the one-point vorticity and strain rate correlation functions. Phys. Fluids 24 (11), 19341936.
Sreenivasan, K. R. 1995 On the universality of the Kolmogorov constant. Phys. Fluids 7 (11), 27782784.
Sreenivasan, K. R. 2004 Possible effects of small-scale intermittency in turbulent reacting flows. Flow, Turbul. Combust. 72 (2–4), 115131.
Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29 (1), 435472.
Suman, S. & Girimaji, S. S. 2013 Velocity gradient dynamics in compressible turbulence: characterization of pressure-Hessian tensor. Phys. Fluids 25 (12), 125103.
Tokgoz, S., Elsinga, G. E., Delfos, R. & Westerweel, J. 2012 Spatial resolution and dissipation rate estimation in Taylor–Couette flow for tomographic PIV. Exp. Fluids 53 (3), 561583.
Tsinober, A. 2009 An Informal Conceptual Introduction to Turbulence. Springer.
Vincent, A. & Meneguzzi, M. 1991 Spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 120.
Vincent, A. & Meneguzzi, M. 1994 Dynamics of vorticity tubes in homogeneous turbulence. J. Fluid Mech. 258, 245254.
Wallace, J. M. 2009 Twenty years of experimental and direct numerical simulation access to the velocity gradient tensor: What have we learned about turbulence? Phys. Fluids 21 (2), 021301.
Wilczek, M. & Meneveau, C. 2014 Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields. J. Fluid Mech. 756, 191225.
Worth, N. A. & Nickels, T. B. 2011 Time-resolved volumetric measurement of fine-scale coherent structures in turbulence. Phys. Rev. E 84 (2), 025301.
Zheng, Q. S. 1993 On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions. Intl J. Engng Sci. 31 (7), 10131024.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed