Skip to main content Accessibility help
×
Home

On velocity and reactive scalar spectra in turbulent premixed flames

  • H. Kolla (a1), E. R. Hawkes (a2), A. R. Kerstein (a3), N. Swaminathan (a4) and J. H. Chen (a1)...

Abstract

Kinetic energy and reactive scalar spectra in turbulent premixed flames are studied from compressible three-dimensional direct numerical simulations (DNS) of a temporally evolving rectangular slot-jet premixed flame, a statistically one-dimensional configuration. The flames correspond to a lean premixed hydrogen–air mixture at an equivalence ratio of 0.7, preheated to 700 K and at 1 atm, and three DNS are considered with a fixed jet Reynolds number of 10 000 and a jet Damköhler number varying between 0.13 and 0.54. For the study of spectra, motivated by the need to account for density change, which can be locally strong in premixed flames, a new density-weighted definition for two-point velocity/scalar correlations is proposed. The density-weighted two-point correlation tensor retains the essential properties of its constant-density (incompressible) counterpart and recovers the density-weighted Reynolds stress tensor in the limit of zero separation. The density weighting also allows the derivation of balance equations for velocity and scalar spectrum functions in the wavenumber space that illuminate physics unique to combusting flows. Pressure–dilatation correlation is a source of kinetic energy at high wavenumbers and, analogously, reaction rate–scalar fluctuation correlation is a high-wavenumber source of scalar energy. These results are verified by the spectra constructed from the DNS data. The kinetic energy spectra show a distinct inertial range with a $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}-5/3$ scaling followed by a ‘diffusive–reactive’ range at higher wavenumbers. The exponential drop-off in this range shows a distinct inflection in the vicinity of the wavenumber corresponding to a laminar flame thickness, $\delta _L$ , and this is attributed to the contribution from the pressure–dilatation term in the energy balance in wavenumber space. Likewise, a clear spike in spectra of major reactant species (hydrogen) arising from the reaction-rate term is observed at wavenumbers close to $\delta _L$ . It appears that in the inertial range classical scaling laws for the spectra involving the Kolmogorov scale are applicable, but in the high-wavenumber range where chemical reactions have a strong signature the laminar flame thickness produces a better collapse. It is suggested that a full scaling should perhaps involve the Kolmogorov scale, laminar flame thickness, Damköhler number and Karlovitz number.

Copyright

Corresponding author

Email address for correspondence: hnkolla@sandia.gov

References

Hide All
Batchelor, G. K. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113133.
Batchelor, G. K., Howells, I. D. & Townsend, A. A. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid. Part 2. The case of small conductivity. J. Fluid Mech. 5, 134139.
Bilger, R. W. 2004 Some aspects of scalar dissipation. Flow Turbul. Combust. 72, 93114.
Bilger, R. W., Saetran, L. R. & Krishnamoorthy, L. V. 1991 Reaction in a scalar mixing layer. J. Fluid Mech. 233, 211242.
Chakraborty, N. & Swaminathan, N. 2007 Influence of the Damköhler number on turbulence–scalar interaction in premixed flames. I. Physical insight. Phys. Fluids 19, 045103.
Chen, J. H., Choudhary, A., de Supinski, B., DeVries, M., Hawkes, E. R., Klasky, S., Liao, W. K., Ma, K. L., Mellor-Crummey, J., Podhorski, N., Sankaran, R., Shende, S. & Yoo, C. S. 2009 Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Disc. 2, 131.
Corrsin, S. 1961 The reactant concentration spectrum in turbulent mixing with a first order reaction. J. Fluid Mech. 11, 407416.
Dimotakis, P. E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329356.
Furukawa, J., Noguchi, Y., Hirano, T. & Williams, F. A. 2002 Anisotropic enhancement of turbulence in large-scale, low-intensity turbulent premixed propane–air flames. J. Fluid Mech. 462, 209243.
Guttenfelder, W. A., King, G. B., Gore, J. P., Laurendeau, N. M. & Renfro, M. W. 2003 Hydroxyl time-series measurements and simulations for turbulent premixed jet flames in the thickened preheat regime. Combust. Flame 135, 381403.
Hawkes, E. R., Chatakonda, O., Kolla, H., Kerstein, A. R. & Chen, J. H. 2012 A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combust. Flame 159 (8), 26902703.
Hinze, J. O. 1975 Turbulence, 2nd edn. McGraw-Hill.
Jones, W. P. 1993 Turbulence modelling and numerical solution methods for variable density and combusting flows. In Turbulent Reacting Flows (ed. Libby, P. A. & Williams, F. A.), pp. 309374. Academic Press.
Kariuki, J., Dawson, J. R. & Mastorakos, E. 2012 Measurements in turbulent premixed bluff body flames close to blow-off. Combust. Flame 159, 25892607.
Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E. & Miller, J. A.1986 A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties. Tech. Rep. SAND86-8246. Sandia National Laboratories.
Kee, R. J., Rupley, F. M., Meeks, E. & Miller, J. A.1996 CHEMKIN-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. Tech. Rep. SAND96-8216. Sandia National Laboratories.
Kennedy, C. A. & Carpenter, M. H. 1994 Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Maths 14 (4), 397433.
Kennedy, C. A., Carpenter, M. H. & Lewis, R. M. 2000 Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Maths 35 (3), 177219.
Knaus, R. & Pantano, C. 2009 On the effect of heat release in turbulence spectra of non-premixed reacting shear layers. J. Fluid Mech. 626, 67109.
Kosály, G. 1993 Frequency spectra of reactant fluctuations in turbulent flows. J. Fluid Mech. 246, 489502.
Krzywoblocki, M. Z. E. 1952 On the invariants in the turbulence in compressible viscous fluids. J. Franklin Inst. 254, 317322.
Li, J., Zhao, Z., Kazarov, A. & Dryer, F. L. 2004 An updated comprehensive kinetic model of hydrogen combustion. Intl J. Chem. Kinet. 36, 566575.
Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181, 441466.
Poinsot, T. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible viscous flow. J. Comput. Phys. 101, 104129.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Rogallo, R. S.1981 Numerical experiments in homogeneous turbulence. NASA Tech. Memo. 81315. NASA Ames Research Center, Stanford, CA.
Sarkar, S., Erlebacher, G., Hussaini, M. Y. & Kreiss, H. O. 1991 The analysis and modelling of dilatational terms in compressible turbulence journal. J. Fluid Mech. 227, 473493.
Swaminathan, N. & Grout, R. W. 2006 Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18, 045102.
Ulitsky, M. & Collins, L. 1997 Application of the eddy damped quasi-normal Markovian spectral transport theory to premixed turbulent flames. Phys. Fluids 9, 34103430.
Vaishnavi, P., Kronenburg, A. & Pantano, C. 2008 On the spatial length scales of scalar dissipation in turbulent jet flames. J. Fluid Mech. 596, 103132.
Wang, G., Karpetis, A. N. & Barlow, R. S. 2007 Dissipation length scales in turbulent nonpremixed jet flames. Combust. Flame 148, 6275.
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203240.
Xia, Y., Liu, Y., Vaithianathan, T. & Collins, L. R. 2010 Eddy damped quasinormal Markovian theory for chemically reactive scalars in isotropic turbulence. Phys. Fluids 22, 045103.
Yeung, P. & Pope, S. B. 1989 Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531586.
Yoo, C. S. & Im, H. G. 2007 Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects. Combust. Theor. Model. 11, 259286.
Yoshizawa, A., Matsuo, Y. & Mizobuchi, Y. 2013 A construction of the Reynolds-averaged turbulence transport equations in a variable-density flow, based on the concept of mass-weighted fluctuations. Phys. Fluids 25, 075105.
Zeman, O. 1991 On the decay of compressible isotropic turbulence. Phys. Fluids A 3, 951955.
Zhang, S. & Rutland, C. J. 1995 Premixed flame effects on turbulence and pressure-related terms. Combust. Flame 102, 447461.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

On velocity and reactive scalar spectra in turbulent premixed flames

  • H. Kolla (a1), E. R. Hawkes (a2), A. R. Kerstein (a3), N. Swaminathan (a4) and J. H. Chen (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed