Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-23T19:55:47.090Z Has data issue: false hasContentIssue false

On the relative importance of Taylor-vortex and non-axisymmetric modes in flow between rotating cylinders

Published online by Cambridge University Press:  28 March 2006

E. R. Krueger
Affiliation:
Department of Mathematics, Rensselaer Polytechnic Institute, Troy, New York Present address: Department of Applied Mathematics, University of Colorado, Boulder, Colorado.
A. Gross
Affiliation:
Department of Mathematics, Rensselaer Polytechnic Institute, Troy, New York Present address: Bell Telephone Laboratories, Murray Hill, New Jersey.
R. C. Di Prima
Affiliation:
Department of Mathematics, Rensselaer Polytechnic Institute, Troy, New York

Abstract

The small-gap equations for the stability of Couette flow with respect to non-axisymmetric disturbances are derived. The eigenvalue problem is solved by a direct numerical procedure. It is found that there is a critical value of Ω211, Ω2 and R1, R2 are the angular velocities and radii of the inner and outer cylinders respectively) of approximately −0·78, above which the critical disturbance is axisymmetric and below which it is non-axisymmetric. In particular for R1/R2 = 0·95, Ω21 = −1, the wave-number in the azimuthal direction of the critical disturbance is m = 4. This result is confirmed when the full linear disturbance equations are considered, i.e. the small-gap approximation is not made.

Type
Research Article
Copyright
© 1966 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bisshopp, F. E. 1963a Phys. Fluids, 6, 212.
Bisshopp, F. E. 1963b Tech. Rep. 51, Nonr 562(07), Brown University, Providence, Rhode Island.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Coles, D. 1960 Paper presented at the 10th Int. Congr. Appl. Mech. Stresa, Italy.
Coles, D. 1965 J. Fluid Mech. 21, 38.
Davey, A. 1962 J. Fluid Mech. 14, 33.
Di Prima, R. C. 1955 Ballistics Research Laboratories Report no. 924, Aberdeen Proving Grounds, Maryland.
Di Prima, R. C. 1961 Phys. Fluids, 4, 751.
Di Prima, R. C. 1963 J. Appl. Mech. 30, 48.
Di Prima, R. C. & Stuart, J. T. 1964 Paper presented at 11th Int. Congr. Appl. Mech. Munich, Germany. To appear in the Proceedings of the Congress.Google Scholar
Donnelly, R. J. & Fultz, E. 1960 Proc. Roy. Soc., A 258, 101.
Gross, A. G. 1964 Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, New York.
Harris, D. L. & Reid, W. H. 1964 J. Fluid Mech. 20, 9.
Krueger, E. R. 1962 Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, New York.
Krueger, E. R. & Di Prima, R. C. 1962 Phys. Fluids, 5, 1362.
Lambert, R. B., Karlsson, S. K. F. & Snyder, H. A. 1964 Phys. Lett. 9, 22.
Lewis, J. W. 1928 Proc. Roy. Soc., A 117, 388.
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.
Nissan, A. H., Nardacci, J. L. & Ho, C. Y. 1963 A.I.Ch.E. J., 9, 620.
Roberts, P. H. 1965 Proc. Roy. Soc. A, 283, 531.
Schultz-Grunow, F. & Hein, H. 1956 Z. Flugwiss, 4, 28.
Schwarz, K. W., Springett, B. E. & Donnelly, R. J. 1964 J. Fluid Mech. 20, 28.
Snyder, H. A. & Karlsson, S. K. F. 1965 Bull. Amer. Phys. Soc. 10, 2.
Sparrow, E. M., Munro, W. D. & Jonsson, V. K. 1964 J. Fluid Mech. 20, 3.
Taylor, G. I. 1923 Phil. Trans., A 223, 289.
Supplementary material: PDF

Krueger et al. supplementary material

Supplementary Material

Download Krueger et al. supplementary material(PDF)
PDF 1.2 MB