Bonneton, P., Chazel, F., Lannes, D., Marche, F. & Tissier, M.
2011
A Splitting approach for the fully nonlinear and weakly dispersive Green. J. Comput. Phys.
230 (4), 1479–1498.10.1016/j.jcp.2010.11.015
Boussinesq, J.
1871
Théorie de l’intumescence liquide, appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. Acad. Sci. Inst. France. Sci. Math. Phys.
72, 755–759.
Boussinesq, J.
1877
Essai sur la théorie des eaux écourantes. Acad. Sci. Inst. France. Sci. Math. Phys.
23, 1–680.
Castro-Orgaz, O. & Hager, W. H.
2015
Boussinesq- and Serre-type models with improved linear dispersion characteristics: applications. J. Hydraul. Res.
53 (2), 282–284.
Cosserat, E. & Cosserat, F.
1909
Théorie des corps déformables. Librairie scientifique A. Hermann et Fils.
Demirbilek, Z. & Webster, W. C.
1999
The Green–Naghdi theory of fluid sheets for shallow-water waves. In Developments in Offshore Engineering: Wave Phenomena and Offshore Topics, pp. 1–54. Gulf Publishing Company.
Deusebio, E., Vallgren, A. & Lindborg, E.
2013
The route to dissipation in strongly stratified and rotating flows. J. Fluid Mech.
720, 66–103.10.1017/jfm.2012.611
Dritschel, D. G.
1989
On the stabilization of a two-dimensional vortex strip by adverse shear. J. Fluid Mech.
206, 193–221.10.1017/S0022112089002284
Dritschel, D. G. & Ambaum, M. H. P.
1997
A contour-advective semi-Lagrangian algorithm for the simulation of fine-scale conservative fields. Q. J. R. Meteorol. Soc.
123, 1097–1130.
Dritschel, D. G. & Fontane, J.
2010
The combined Lagrangian advection method. J. Comput. Phys.
229, 5408–5417.
Dritschel, D. G., Gottwald, G. A. & Oliver, M.
2017
Comparison of variational balance models for the rotating shallow water equations. J. Fluid Mech.
822, 689–716.
Dritschel, D. G. & McKiver, W. J.
2015
Effect of Prandtl’s ratio on balance in geophysical turbulence. J. Fluid Mech.
777, 569–590.
Dritschel, D. G., Qi, W. & Marston, J. B.
2015
On the late-time behaviour of a bounded, inviscid two-dimensional flow. J. Fluid Mech.
783, 1–22.
Dritschel, D. G., Scott, R. K., Macaskill, C., Gottwald, G. A. & Tran, C. V.
2009
Late time evolution of unforced inviscid two-dimensional turbulence. J. Fluid Mech.
640, 215–233.10.1017/S0022112009991121
Dritschel, D. G. & Tobias, S. M.
2012
Two-dimensional magnetohydrodynamic turbulence in the small magnetic Prandtl number limit. J. Fluid Mech.
703, 85–98.
Dritschel, D. G. & Vanneste, J.
2006
The instability of a potential vorticity front. J. Fluid Mech.
561, 237–254.10.1017/S0022112006000644
Dutykh, D., Clamond, D., Milewski, P. & Mitsotakis, D.
2013
Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations. Eur. J. Appl. Maths
24 (5), 761–787.
Ertekin, R. C.1984 Soliton generation by moving disturbances in shallow water. PhD thesis, University of California, Berkeley, CA, USA.
Ford, R., McIntyre, M. E. & Norton, W. A.
2000
Balance and the slow quasimanifold: some explicit results. J. Atmos. Sci.
57, 1236–1254.
Gill, A. E.
1982
Atmosphere-Ocean Dynamics. Academic.
Green, A. E., Laws, N. & Naghdi, P. M.
1974
On the theory of water waves. Proc. R. Soc. Lond. A
338 (1612), 43–55.10.1098/rspa.1974.0072
Green, A. E. & Naghdi, P. M.
1976a
A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech.
78 (2), 273–246.10.1017/S0022112076002425
Green, A. E. & Naghdi, P. M.
1976b
Directed fluid sheets. Proc. R. Soc. Lond. A
347 (1651), 447–473.10.1098/rspa.1976.0011
Green, A. E., Naghdi, P. M. & Wainwright, W. L.
1965
A general theory of a Cosserat surface. Arch. Rat. Mech. Anal.
20 (4), 287–308.10.1007/BF00253138
Hoskins, B. J., McIntyre, M. E. & Robertson, A. W.
1985
On the use and significance of isentropic potential-vorticity maps. Q. J. R. Meteorol. Soc.
111, 877–946.10.1002/qj.49711147002
Jalali, M. R.2016 One-dimensional and two-dimensional Green–Naghdi equation solvers for shallow flow over uniform and non-uniform beds. PhD thesis, University of Edinburgh, Edinburgh, Scotland, UK.
Juckes, M. N. & McIntyre, M. E.
1987
A high-resolution one-layer model of breaking planetary waves in the stratosphere. Nature
328, 590–596.10.1038/328590a0
Kantorovich, L. V. & Krylov, V. I.
1958
Approximate Methods of Higher Analysis. P. Noordhoff Ltd.
Le Métayer, O., Gavrilyuk, S. & Hank, S.
2010
A numerical scheme for the Green–Naghdi model. J. Comput. Phys.
229 (6), 2034–2045.
Miles, J. W. & Salmon, R.
1985
Weakly dispersive, nonlinear gravity waves. J. Fluid Mech.
157, 519–531.
Mohebalhojeh, A. R. & Dritschel, D. G.
2000
On the representation of gravity waves in numerical models of the shallow water equations. Q. J. R. Meteorol. Soc.
126, 669–688.
Mohebalhojeh, A. R. & Dritschel, D. G.
2001
Hierarchies of balance conditions for the f-plane shallow water equations. J. Atmos. Sci.
58 (16), 2411–2426.
Mohebalhojeh, A. R. & Dritschel, D. G.
2004
Contour-advective semi-Lagrangian algorithms for many-layer primitive equation models. Q. J. R. Meteorol. Soc.
130, 347–364.10.1256/qj.03.49
Mohebalhojeh, A. R. & Dritschel, D. G.
2007
Assessing the numerical accuracy of complex spherical shallow water flows. Mon. Weath. Rev.
135 (11), 3876–3894.10.1175/2007MWR2036.1
Naghdi, P. M.
1972
The theory of shells and plates. In Handbuch der Physik (ed. Flügge, S.), vol. V1a/2, p. 425. Springer.
Norbury, J. & Roulstone, I.
2002a
Large-scale Atmosphere–Ocean Dynamics: Vol. I: Analytical Methods and Numerical Models. Cambridge University Press.10.1017/CBO9780511549991
Norbury, J. & Roulstone, I.
2002b
Large-scale Atmosphere–Ocean Dynamics: Vol. II: Geometric Methods and Models. Cambridge University Press.
Pearce, J. D. & Esler, J. G.
2010
A pseudo-spectral algorithm and test cases for the numerical solution of the two-dimensional rotating Green–Naghdi shallow water equations. J. Comput. Phys.
229 (20), 7594–7608.
Peregrine, D. H.
1967
Long waves on a beach. J. Fluid Mech.
27 (4), 815–827.10.1017/S0022112067002605
Peregrine, D. H.
1972
Equations for water waves and the approximation behind them. In Waves on Beaches and Resulting Sediment Transport (ed. Meyer, R.), pp. 95–121. Academic.
Płotka, H. & Dritschel, D. G.
2014
Simply-connected vortex-patch shallow-water quasi-equilibria. J. Fluid Mech.
743, 481–502.10.1017/jfm.2014.48
Polvani, L. M., McWilliams, J. C., Spall, M. A. & Ford, R.
1994
The coherent structures of shallow-water turbulence: deformation-radius effects, cyclone/anticyclone asymmetry and gravity-wave generation. Chaos
4 (2), 177–186.
Rayleigh, Lord
1876
On waves. Phil. Mag.
1 (4), 257–279.
Read, P.
2011
Dynamics and circulation regimes of terrestrial planets. Planet. Space Sci.
59, 900–914.
Serre, F.
1953
Contibution à l’étude des écoulements permanents et variables dans les canaux. La Houille Blanche
8 (12), 830–887.
Shields, J. J. & Webster, W. C.
1988
On direct methods in water-wave theory. J. Fluid Mech.
197, 171–199.10.1017/S0022112088003222
Skjelbreia, L. & Hendrickson, J.
1960
Fifth order gravity wave theory. Proc. 7th Conf. Coastal Engng
27 (4), 184–196.
Smith, R. K. & Dritschel, D. G.
2006
Revisiting the Rossby–Haurwitz wave test case with Contour Advection. J. Comput. Phys.
217 (2), 473–484.10.1016/j.jcp.2006.01.011
Stokes, G. G.
1847
On the theory of oscillatory waves. Trans. Camb. Phil. Soc.
8, 441–455.
Thomson, A. F.
2008
The atmospheric ocean: eddies and jets in the antarctic circumpolar current. Phil. Trans. R. Soc. A
366, 4529–4541.10.1098/rsta.2008.0196
Thomson, S. I. & McIntyre, M. E.
2016
Jupiter’s unearthly jets: a new turbulent model exhibiting statistical steadiness without large-scale dissipation. J. Atmos. Sci.
73 (3), 1119–1141.10.1175/JAS-D-14-0370.1
Vallis, G. K.
2008
Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.
Viúdez, Á. & Dritschel, D. G.
2004
Optimal potential vorticity balance of geophysical flows. J. Fluid Mech.
521, 343–352.10.1017/S0022112004002058
Waite, M. L. & Bartello, P.
2006
The transition from geostrophic to stratified turbulence. J. Fluid Mech.
568, 89–108.10.1017/S0022112006002060
Waugh, D. W. & Dritschel, D. G.
1991
The stability of filamentary vorticity in two-dimensional geophysical vortex-dynamics models. J. Fluid Mech.
231, 575–598.
Webster, W. C., Duan, W. Y. & Zhao, B. B.
2011
Green–Naghdi theory, Part A: Green–Naghdi (GN) equations for shallow water waves. J. Mar. Sci. Appl.
10 (3), 253–258.10.1007/s11804-011-1066-1
Whitham, G. B.
1967
Variational methods and applications to water waves. Proc. R. Soc. Lond. A
299 (1456), 6–25.
Zhao, B. B. & Duan, W. Y.
2010
Fully nonlinear shallow water waves simulation using Green–Naghdi theory. J. Mar. Sci. Appl.
9 (1), 1–7.
Zhao, B. B., Duan, W. Y. & Ertekin, R. C.
2014
Application of higher-level GN theory to some wave transformation problems. Coast. Engng
83, 177–189.10.1016/j.coastaleng.2013.10.010
Zhao, B. B., Duan, W. Y., Ertekin, R. C. & Hayatdavoodi, M.
2015
High-level Green–Naghdi wave models for nonlinear wave transformation in three dimensions. J. Ocean Engng Mar. Energy
1, 121–132.