Skip to main content Accessibility help
×
Home

On the propagation of gravity currents over and through a submerged array of circular cylinders

  • Jian Zhou (a1), Claudia Cenedese (a2), Tim Williams (a3), Megan Ball (a3), Subhas K. Venayagamoorthy (a1) and Roger I. Nokes (a3)...

Abstract

The propagation of full-depth lock-exchange bottom gravity currents past a submerged array of circular cylinders is investigated using laboratory experiments and large eddy simulations. Firstly, to investigate the front velocity of gravity currents across the whole range of array density $\unicode[STIX]{x1D719}$ (i.e. the volume fraction of solids), the array is densified from a flat bed ( $\unicode[STIX]{x1D719}=0$ ) towards a solid slab ( $\unicode[STIX]{x1D719}=1$ ) under a particular submergence ratio $H/h$ , where $H$ is the flow depth and $h$ is the array height. The time-averaged front velocity in the slumping phase of the gravity current is found to first decrease and then increase with increasing $\unicode[STIX]{x1D719}$ . Next, a new geometrical framework consisting of a streamwise array density $\unicode[STIX]{x1D707}_{x}=d/s_{x}$ and a spanwise array density $\unicode[STIX]{x1D707}_{y}=d/s_{y}$ is proposed to account for organized but non-equidistant arrays ( $\unicode[STIX]{x1D707}_{x}\neq \unicode[STIX]{x1D707}_{y}$ ), where $s_{x}$ and $s_{y}$ are the streamwise and spanwise cylinder spacings, respectively, and $d$ is the cylinder diameter. It is argued that this two-dimensional parameter space can provide a more quantitative and unambiguous description of the current–array interaction compared with the array density given by $\unicode[STIX]{x1D719}=(\unicode[STIX]{x03C0}/4)\unicode[STIX]{x1D707}_{x}\unicode[STIX]{x1D707}_{y}$ . Both in-line and staggered arrays are investigated. Four dynamically different flow regimes are identified: (i) through-flow propagating in the array interior subject to individual cylinder wakes ( $\unicode[STIX]{x1D707}_{x}$ : small for in-line array and arbitrary for staggered array; $\unicode[STIX]{x1D707}_{y}$ : small); (ii) over-flow propagating on the top of the array subject to vertical convective instability ( $\unicode[STIX]{x1D707}_{x}$ : large; $\unicode[STIX]{x1D707}_{y}$ : large); (iii) plunging-flow climbing sparse close-to-impermeable rows of cylinders with minor streamwise intrusion ( $\unicode[STIX]{x1D707}_{x}$ : small; $\unicode[STIX]{x1D707}_{y}$ : large); and (iv) skimming-flow channelized by an in-line array into several subcurrents with strong wake sheltering ( $\unicode[STIX]{x1D707}_{x}$ : large; $\unicode[STIX]{x1D707}_{y}$ : small). The most remarkable difference between in-line and staggered arrays is the non-existence of skimming-flow in the latter due to the flow interruption by the offset rows. Our analysis reveals that as $\unicode[STIX]{x1D719}$ increases, the change of flow regime from through-flow towards over- or skimming-flow is responsible for increasing the gravity current front velocity.

Copyright

Corresponding author

Email address for correspondence: vskaran@colostate.edu

References

Hide All
An, S., Julien, P. Y. & Venayagamoorthy, S. K. 2012 Numerical simulation of particle-driven gravity currents. Environ. Fluid Mech 12, 495513.
Cantero, M. I., Lee, J. R., Balachandar, S. & Garcia, M. H. 2007 On the front velocity of gravity currents. J. Fluid Mech. 586, 139.
Cenedese, C., Nokes, R. & Hyatt, J. 2016 Lock-exchange gravity currents over rough bottoms. Environ. Fluid Mech.; doi:10.1007/s10652-016-9501-0.
Harvey, J. W., Conklin, M. H. & Koelsch, R. S. 2003 Predicting changes in hydrologic retention in an evolving semi-arid alluvial stream. Adv. Water Resour. 26, 939950.
Hatcher, L., Hogg, A. J. & Woods, A. W. 2000 The effects of drag on turbulent gravity currents. J. Fluid Mech. 416, 297314.
Hirt, C. W. 1993 Volume-fraction techniques: power tools for wind engineering. J. Wind Engng Ind. Aerodyn. 46–47, 327338.
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201225.
Jamali, M., Zhang, X & Nepf, H. M. 2008 Exchange flow between a canopy and open water. J. Fluid Mech. 611, 237254.
Jimenez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.
van Leer, B. 1977 Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys. 23, 276299.
Nepf, H., Ghisalberti, M., White, B. & Murphy, E. 2007 Retention time and dispersion associated with submerged aquatic canopies. Water Resour. Res. 43, W04422.
Nepf, H. M. 2012 Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44, 123142.
Nokes, R. 2016 Streams 2.05 – System Theory and Design. University of Canterbury, Christchurch.
Oertel, M. & Schlenkhoff, A. 2012 Crossbar block ramps: flow regimes, energy dissipation, friction factors, and drag forces. J. Hydraul. Engng 138 (5), 440448.
Oke, T. R. 1988 Boundary Layer Climates, 2nd edn. Methuen.
Ooi, S. K., Constantinescu, G. & Weber, L. 2009 Numerical simulations of lock-exchange compositional gravity current. J. Fluid Mech. 635, 361388.
Ozan, A. Y., Constantinescu, G. & Hogg, A. J. 2015 Lock-exchange gravity currents propagating in a channel containing an array of obstacles. J. Fluid Mech. 765, 544575.
Ozan, A. Y., Constantinescu, G. & Nepf, H. 2016 Free-surface gravity currents propagating in an open channel containing a porous layer at the free surface. J. Fluid Mech. 809, 601627.
Rottman, J. W. & Simpson, J. E. 1983 Gravity currents produced by instantaneous releases of a heavy fluid in a retangular channel. J. Fluid Mech. 135, 95110.
Savage, B. M. & Johnson, M. C. 2001 Flow over ogee spillways: physical and numerical models cast study. J. Hydraul. Engng 127 (8), 640649.
Shin, J. O., Dalziel, S. B. & Linden, P. F. 2004 Gravity currents produced by lock exchange. J. Fluid Mech. 521, 134.
Simpson, J. E. 1997 Gravity Currents: in the Environment and Laboratory, 2nd edn. Cambridge University Press.
Smagorinsky, J. 1963 General circulation experiments with the primitive equations: I. The basic experiments. Mon. Weath. Rev. 91, 99164.
Tanino, Y., Nepf, H. M. & Kulis, P. S. 2005 Gravity currents in aquatic canopies. Water Resour. Res. 41, W12402.
Tokyay, T., Constantinescu, G. & Meiburg, E. 2011 Lock-exchange gravity currents with a high volume of release propagating over a periodic array of obstacles. J. Fluid Mech. 672, 570605.
Tokyay, T., Constantinescu, G. & Meiburg, E. 2012 Tail structure and bed friction velocity distribution of gravity currents propagating over an array of obstacles. J. Fluid Mech. 694, 252291.
Tokyay, T., Constantinescu, G. & Meiburg, E. 2014 Lock-exchange gravity currents with a low volume of release propagating over an array of obstacles. J. Geophys. Res. Oceans 119, 27522768.
Ungarish, M. & Huppert, H. E. 2000 High-Reynolds number gravity currents over a porous boundary: shallow-water solutions and box-model approximations. J. Fluid Mech. 418, 123.
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. J. Fluid Mech. 28, 477539.
Yao, G. F.2004 Development of new pressure-velocity solvers in FLOW-3D. Tech. Rep. FSI-04-TN68, Flow Science, Inc.
Zhang, X. & Nepf, H. M. 2008 Density-driven exchange flow between open water and an aquatic canopy. Water Resour. Res. 44, W08417.
Zhang, X. & Nepf, H. M. 2011 Exchange flow between open water and floating vegetation. Environ. Fluid Mech. 11, 531546.
Zhou, J. & Venayagamoorthy, S. K. 2017 Numerical simulations of intrusive gravity currents interacting with a bottom-mounted obstacle in a continuously stratified ambient. Environ. Fluid Mech. 17, 191209.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

On the propagation of gravity currents over and through a submerged array of circular cylinders

  • Jian Zhou (a1), Claudia Cenedese (a2), Tim Williams (a3), Megan Ball (a3), Subhas K. Venayagamoorthy (a1) and Roger I. Nokes (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.