Skip to main content Accessibility help

On the problem of large-scale magnetic field generation in rotating compressible convection

  • B. Favier (a1) and P. J. Bushby (a2)


Mean-field dynamo theory suggests that turbulent convection in a rotating layer of electrically conducting fluid produces a significant $\alpha $ -effect, which is one of the key ingredients in any mean-field dynamo model. Provided that this $\alpha $ -effect operates more efficiently than (turbulent) magnetic diffusion, such a system should be capable of sustaining a large-scale dynamo. However, in the Boussinesq model that was considered by Cattaneo & Hughes (J. Fluid Mech., vol. 553, 2006, pp. 401–418) the dynamo produced small-scale, intermittent magnetic fields with no significant large-scale component. In this paper, we consider the compressible analogue of the rotating convective layer that was considered by Cattaneo & Hughes (2006). Varying the horizontal scale of the computational domain, we investigate the dependence of the dynamo upon the rotation rate. Our simulations indicate that these turbulent compressible flows can drive a small-scale dynamo but, even when the layer is rotating very rapidly (with a mid-layer Taylor number of $Ta= 1{0}^{8} $ ), we find no evidence for the generation of a significant large-scale component of the magnetic field on a dynamical time scale. Like Cattaneo & Hughes (2006), we measure a negligible (time-averaged) $\alpha $ -effect when a uniform horizontal magnetic field is imposed across the computational domain. Although the total horizontal magnetic flux is a conserved quantity in these simulations, the (depth-dependent) horizontally averaged magnetic field always exhibits strong fluctuations. If these fluctuations are artificially suppressed within the code, we measure a significant mean electromotive force that is comparable to that found in related calculations in which the $\alpha $ -effect is measured using the test-field method, even though we observe no large-scale dynamo action.


Corresponding author

Email address for correspondence:


Hide All
Alexakis, A., Mininni, P. D. & Pouquet, A. 2005 Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence. Phys. Rev. E 72, 046301.
Brandenburg, A. 2001 The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence. Astrophys. J. 550, 824840.
Brandenburg, A., Rädler, K.-H., Rheinhardt, M. & Käpylä, P. J. 2008a Magnetic diffusivity tensor and dynamo effects in rotating and shearing turbulence. Astrophys. J. 676, 740761.
Brandenburg, A., Rädler, K.-H. & Schrinner, M. 2008b Scale dependence of alpha effect and turbulent diffusivity. Astron. Astrophys. 482, 739746.
Brummell, N. H., Clune, T. L. & Toomre, J. 2002 Penetration and overshooting in turbulent compressible convection. Astrophys. J. 570, 825854.
Bushby, P. J., Houghton, S. M., Proctor, M. R. E. & Weiss, N. O. 2008 Convective intensification of magnetic fields in the quiet sun. Mon. Not. R. Astron. Soc. 387, 698706.
Cattaneo, F. 1999 On the origin of magnetic fields in the quiet photosphere. Astrophys. J. 515, L39L42.
Cattaneo, F. & Hughes, D. W. 2006 Dynamo action in a rotating convective layer. J. Fluid Mech. 553, 401418.
Cattaneo, F. & Hughes, D. W. 2009 Problems with kinematic mean field electrodynamics at high magnetic Reynolds numbers. Mon. Not. R. Astron. Soc. 395, L48L51.
Chan, K. L. 2007 Rotating convection in f-boxes: faster rotation. Astron. Nachr. 328, 10591061.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Childress, S. & Soward, A. M. 1972 Convection-driven hydromagnetic dynamo. Phys. Rev. Lett. 29, 837839.
Favier, B. & Bushby, P. J. 2012 Small-scale dynamo action in rotating compressible convection. J. Fluid. Mech. 690, 262287.
Giesecke, A., Ziegler, U. & Rüdiger, G. 2005 Geodynamo $\alpha $ -effect derived from box simulations of rotating magnetoconvection. Phys. Earth Planet. Inter. 152, 90102.
Hubbard, A. & Brandenburg, A. 2009 Memory effect in turbulent transport. Astrophys. J. 706, 712726.
Hubbard, A., Sordo, F. Del, Käpylä, P. J. & Brandenburg, A. 2009 The $\alpha $ effect with imposed and dynamo-generated magnetic fields. Mon. Not. R. Astron. Soc. 398, 18911899.
Hughes, D. W. & Cattaneo, F. 2008 The alpha-effect in rotating convection: size matters. J. Fluid Mech. 594, 445461.
Hughes, D. W. & Proctor, M. R. E. 2009 Large-scale dynamo action driven by velocity shear and rotating convection. Phys. Rev. Lett. 102, 044501.
Hughes, D. W., Proctor, M. R. E. & Cattaneo, F. 2011 The $\alpha $ effect in rotating convection: a comparison of numerical simulations. Mon. Not. Astron. Soc. 414, L45L49.
Käpylä, P. J., Korpi, M. J. & Brandenburg, A. 2009a Alpha effect and turbulent diffusion from convection. Astron. Astrophys. 500, 633646.
Käpylä, P. J., Korpi, M. J. & Brandenburg, A. 2009b Large-scale dynamos in rigidly rotating turbulent convection. Astrophys. J. 697, 11531163.
Käpylä, P. J., Korpi, M. J. & Brandenburg, A. 2010a The $\alpha $ effect in rotating convection with sinusoidal shear. Mon. Not. Astron. Soc. 402, 14581466.
Käpylä, P. J., Korpi, M. J. & Brandenburg, A. 2010b Open vs closed boundaries in large-scale convective dynamos. Astron. Astrophys. 518, A22.
Käpylä, P. J., Mantere, M. J. & Hackman, T. 2011 Starspots due to large-scale vortices in rotating turbulent convection. Astrophys. J. 742, 34.
Krause, F. & Rädler, K.-H. 1980 Mean-field Magnetohydrodynamics and Dynamo Theory. Pergamon.
Matthews, P. C., Proctor, M. R. E. & Weiss, N. O. 1995 Compressible magnetoconvection in three dimensions: planforms and nonlinear behaviour. J. Fluid Mech. 305, 281305.
Meneguzzi, M. & Pouquet, A. 1989 Turbulent dynamos driven by convection. J. Fluid Mech. 205, 297398.
Mitra, D., Käpylä, P. J., Tavakol, R. & Brandenburg, A. 2009 Alpha effect and diffusivity in helical turbulence with shear. Astron. Astrophys. 495, 18.
Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.
Moll, R., Pietarila-Graham, J. P., Pratt, J., Cameron, R. H., Müller, W.-C. & Schüssler, M. 2011 Universality of the small-scale dynamo mechanism. Astrophys. J. 736, 36.
Ossendrijver, M., Stix, M. & Brandenburg, A. 2001 Magnetoconvection and dynamo coefficients: dependence of the $\alpha $ effect on rotation and magnetic field. Astron. Astrophys. 376, 713726.
Parker, E. N. 1955 Hydromagnetic dynamo models. Astrophys. J. 122, 293314.
Pietarila-Graham, J. P., Cameron, R. H. & Schüssler, M. 2010 Turbulent small-scale dynamo action in solar surface simulations. Astrophys. J. 714, 16061616.
Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M. & Christensen, U. 2005 Mean-field view on rotating magnetoconvection and a geodynamo model. Astron. Nachr. 326, 245249.
Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M. & Christensen, U. 2007 Mean-field concept and direct numerical simulations of rotating magnetoconvection and the geodynamo. Geophys. Astrophys. Fluid Dyn. 101, 81116.
Soward, A. M. 1974 A convection-driven dynamo: I. The weak field case. Phil. Trans. R. Soc. Lond. A 275, 611646.
Steenbeck, M., Krause, F. & Rädler, K.-H. 1966 Berechnung der mittleren Lorentz–Feldstärke $ \overline{\mathbf{v} \times \mathbf{B} } $ für ein elektrisch leitendes Medium in turbulenter, durch Coriolis–Kräfte beeinflußter Bewegung. Z. Naturforsch. Teil A 21, 369376.
Stellmach, S. & Hansen, U. 2004 Cartesian convection-driven dynamos at low ekman number. Phys. Rev. E 70, 056312.
Tobias, S. M., Cattaneo, F. & Brummell, N. H. 2008 Convective dynamos with penetration, rotation and shear. Astrophys. J. 685, 596605.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

On the problem of large-scale magnetic field generation in rotating compressible convection

  • B. Favier (a1) and P. J. Bushby (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed