Skip to main content Accessibility help

On the meaning of mixing efficiency for buoyancy-driven mixing in stratified turbulent flows

  • Megan S. Davies Wykes (a1), Graham O. Hughes (a2) and Stuart B. Dalziel (a1)


The concept of a mixing efficiency is widely used to relate the amount of irreversible diabatic mixing in a stratified flow to the amount of energy available to support mixing. This common measure of mixing in a flow is based on the change in the background potential energy, which is the minimum gravitational potential energy of the fluid that can be achieved by an adiabatic rearrangement of the instantaneous density field. However, this paper highlights examples of mixing that is primarily ‘buoyancy-driven’ (i.e. energy is released to the flow predominantly from a source of available potential energy) to demonstrate that the mixing efficiency depends not only on the specific characteristics of the turbulence in the region of the flow that is mixing, but also on the density profile in regions remote from where mixing physically occurs. We show that this behaviour is due to the irreversible and direct conversion of available potential energy into background potential energy in those remote regions (a mechanism not previously described). This process (here termed ‘relabelling’) occurs without requiring either a local flow or local mixing, or any other process that affects the internal energy of that fluid. Relabelling is caused by initially available potential energy, associated with identifiable parcels of fluid, becoming dynamically inaccessible to the flow due to mixing elsewhere. These results have wider relevance to characterising mixing in stratified turbulent flows, including those involving an external supply of kinetic energy.


Corresponding author

Email address for correspondence:


Hide All
Aref, H. 1984 Stirring by chaotic advection. J. Fluid Mech. 143, 121.
Bluteau, C. E., Jones, N. L. & Ivey, G. N. 2013 Turbulent mixing efficiency at an energetic ocean site. J. Geophys. Res. 118 (9), 46624672.
Dalziel, S. B., Patterson, M. D., Caulfield, C. P. & Coomaraswamy, I. A. 2008 Mixing efficiency in high-aspect-ratio Rayleigh–Taylor experiments. Phys. Fluids 20 (6), 065106.
Davies Wykes, M. S. & Dalziel, S. B. 2014 Efficient mixing in stratified flows: experimental study of a Rayleigh–Taylor unstable interface within an otherwise stable stratification. J. Fluid Mech. 756, 10271057.
Dunckley, J. F., Koseff, J. R., Steinbuck, J. V., Monismith, S. G. & Genin, A. 2012 Comparison of mixing efficiency and vertical diffusivity models from temperature microstructure. J. Geophys. Res. 117 (C10), 112.
Fernando, H. J. S. 1991 Turbulent mixing in stratified flows. Annu. Rev. Fluid Mech. 368 (1), 455493.
Gayen, B., Griffiths, R. W., Hughes, G. O. & Saenz, J. A. 2013 Energetics of horizontal convection. J. Fluid Mech. 716, R10.
Gayen, B., Griffiths, R. W. & Hughes, G. O. 2014 Stability transitions and turbulence in horizontal convection. J. Fluid Mech. 751, 698724.
Hult, E. L., Troy, C. D. & Koseff, J. R. 2011a The mixing efficiency of interfacial waves breaking at a ridge: 1. Overall mixing efficiency. J. Geophys. Res. 116 (C02), 110.
Hult, E. L., Troy, C. D. & Koseff, J. R. 2011b The mixing efficiency of interfacial waves breaking at a ridge: 2. Local mixing processes. J. Geophys. Res. 116 (C02), 113.
Ivey, G. N. & Imberger, J. 1991 On the nature of turbulence in a stratified fluid. Part I. The energetics of mixing. J. Phys. Oceanogr. 21 (5), 650658.
Jacobs, J. W. & Dalziel, S. B. 2005 Rayleigh–Taylor instability in complex stratifications. J. Fluid Mech. 542, 251279.
Jones, S. W. 1991 The enhancement of mixing by chaotic advection. Phys. Fluids A 3 (5), 10811086.
Lawrie, A. G. W. & Dalziel, S. B. 2011a Rayleigh–Taylor mixing in an otherwise stable stratification. J. Fluid Mech. 688, 507527.
Lawrie, A. G. W. & Dalziel, S. B. 2011b Turbulent diffusion in tall tubes. Part II. Confinement by stratification. Phys. Fluids 23 (8), 085110.
Linden, P. F. 1979 Mixing in stratified fluids. Geophys. Astrophys. Fluid Dyn. 13 (1), 323.
Lorenz, E. N. 1955 Available potential energy and the maintenance of the general circulation. Tellus 7 (2), 157167.
Lozovatsky, I. D. & Fernando, H. J. S. 2013 Mixing efficiency in natural flows. Phil. Trans. R. Soc. Lond. A 371 (1982), 20120213.
Mashayek, A., Caulfield, C. P. & Peltier, W. R. 2013 Time-dependent, non-monotonic mixing in stratified turbulent shear flows: implications for oceanographic estimates of buoyancy flux. J. Fluid Mech. 736, 570593.
Osborn, T. R. 1980 Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10 (1), 8389.
Peltier, W. R. & Caulfield, C. P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 35 (1), 135167.
Prastowo, T., Griffiths, R. W., Hughes, G. O. & Hogg, A. Mc C. 2009 Effects of topography on the cumulative mixing efficiency in exchange flows. J. Geophys. Res. 114 (C8), 112.
Rayleigh, Lord 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14 (1), 8.
Scotti, A. & White, B. 2011 Is horizontal convection really ‘non-turbulent?’. Geophys. Res. Lett. 38 (21), 15.
Tailleux, R. 2009 On the energetics of stratified turbulent mixing, irreversible thermodynamics, Boussinesq models and the ocean heat engine controversy. J. Fluid Mech. 638, 339382.
Tailleux, R. 2013 Available potential energy and exergy in stratified fluids. Annu. Rev. Fluid Mech. 45 (1), 3558.
Taylor, G. I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201 (1065), 192196.
Tseng, Y. & Ferziger, J. H. 2001 Mixing and available potential energy in stratified flows. Phys. Fluids 13 (5), 12811293.
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.
Winters, K. B. & D’Asaro, E. A. 1996 Diascalar flux and the rate of fluid mixing. J. Fluid Mech. 317, 179193.
Winters, K. B., Lombard, P. N., Riley, J. J. & D’Asaro, E. A. 1995 Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115128.
Wunsch, C. & Ferrari, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36 (1), 281314.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

On the meaning of mixing efficiency for buoyancy-driven mixing in stratified turbulent flows

  • Megan S. Davies Wykes (a1), Graham O. Hughes (a2) and Stuart B. Dalziel (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.