Skip to main content Accessibility help

On the linear stability of the inviscid Kármán vortex street

  • Javier Jimenez (a1) (a2)


The classical point-vortex model for a Kármán vortex street is linearly stable only for an isolated case. This property has been shown numerically to hold for other, more complicated, models of the same flow. It is shown here that it is a consequence of the Hamiltonian structure of the model, related to the codimension of the set of matrices with a particular Jordan block structure in the space of Hamiltonian matrices, and that it can be expected to hold generically for any two-dimensional inviscid array of vortices that has back-to-fore symmetry, and that is ‘close enough’ to the point-vortex model.



Hide All
Aref, H. & Siggia, E. D. 1981 Evolution and breakdown of a vortex street in two dimensions. J. Fluid Mech. 109, 435463.
Arnol'D, V. I.1969 The Hamiltonian nature of the Euler equations in the dynamics of a rigid body and of an ideal fluid. Usp. Math. Nauk. 24, 225226.
Arnol'D, V. I.1978 Mathematical Methods of Classical Mechanics, p. 230. Springer.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics, pp. 350352. Cambridge University Press.
Christiansen, J. P. & Zabusky, N. J. 1973 Instability, coalescence and fission of finite-area vortex structures. J. Fluid Mech. 61, 219243.
Couder, Y., Basdevant, C. & Thomé, H. 1984 Solitary vortex couples in two-dimensional turbulent wakes. C. R. Acad. Sci. Paris II, 299, 8994.
Domm, U. 1956 Über die Wirbelstraßen von geringster Instabilität. Z. angew. Math. Mech. 30, 367371.
Galin, D. M. 1975 Versal deformation of linear Hamiltonian systems. Trudy Sem. Pet. Vyp. 1, 6374 (in Russian).
Gerrard, J. H. 1966 The three-dimensional structure of the wake of a circular cylinder. J. Fluid Mech. 25, 143164.
Kazuhiro, J. H. & Oshima, Y. 1985 Numerical study of two-dimensional vortex street. In Proc. Intl Symp. Comput. Fluid Dyn., Sept. 1985, Tokyo (ed. K. Oshima), pp. 617627. Japan Soc. Comp. Fluid Dynamics.
Kida, S. 1982 Stabilizing effects of finite core in a Kármán vortex street. J. Fluid Mech. 122, 487504.
Lamb, H. 1945 Hydrodynamics, 156. Dover.
Mackay, R. S. 1986 Stability of equilibria of Hamiltonian systems. In Nonlinear Phenomena and Chaos (ed. S. Sarkar), pp. 254270. Bristol: Adam Hilger.
Mal'Tsev, A. I.1963 Foundations of Linear Algebra, 100108. Freeman.
Marsden, J. E. & Weinstein, A. 1983 Coadjoint orbits, vortices and Clebsh variables for incompressible fluids. Physica 7D, 305323.
Meiron, D. I., Saffman, P. G. & Schatzman, J. C. 1984 Linear two-dimensional stability of inviscid vortex streets of finite-cored vortices. J. Fluid Mech. 147, 187212.
Rosenhead, L. 1929 The Kármán street of vortices in a channel of finite breadth. Phil. Trans. R. Soc. Land. A 208, 275329.
Saffman, P. G. & Schatzman, J. C. 1982a Stability of a vortex street of finite vortices. J. Fluid Mech. 117, 171185.
Saffman, P. G. & Schatzman, J. C. 1982b An inviscid model for the vortex-street wake. J. Fluid Mech. 122, 467486.
Shirer, H. N. & Wells, R. 1983 Mathematical Structure of the Singularities at the Transitions Between Steady States in Hydrodynamic Systems. Lectures Notes in Physics, vol. 185, pp. 145184. Springer.
Taneda, S. 1959 Downstream development of wakes behind cylinders. J. Phys. Soc. Japan 14, 843848.
Van Dyke, M. 1982 An Album of Fluid Motion, pp. 5657. Parabolic.
MathJax is a JavaScript display engine for mathematics. For more information see

Related content

Powered by UNSILO

On the linear stability of the inviscid Kármán vortex street

  • Javier Jimenez (a1) (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.