Skip to main content Accessibility help

On invariants in grid turbulence at moderate Reynolds numbers

  • T. Kitamura (a1), K. Nagata (a1), Y. Sakai (a1), A. Sasoh (a2), O. Terashima (a1), H. Saito (a1) and T. Harasaki (a2)...


The decay characteristics and invariants of grid turbulence were investigated by means of laboratory experiments conducted in a wind tunnel. A turbulence-generating grid was installed at the entrance of the test section for generating nearly isotropic turbulence. Five grids (square bars of mesh sizes $M= 15$ , 25 and 50 mm and cylindrical bars of mesh sizes $M= 10$ and 25 mm) were used. The solidity of all grids is $\sigma = 0. 36$ . The instantaneous streamwise and vertical (cross-stream) velocities were measured by hot-wire anemometry. The mesh Reynolds numbers were adjusted to $R{e}_{M} = 6700$ , 9600, 16 000 and 33 000. The Reynolds numbers based on the Taylor microscale $R{e}_{\lambda } $ in the decay region ranged from 27 to 112. In each case, the result shows that the decay exponent of turbulence intensity is close to the theoretical value of ${- }6/ 5$ (for the $M= 10~\mathrm{mm} $ grid, ${- }6(1+ p)/ 5\sim - 1. 32$ ) for Saffman turbulence. Here, $p$ is the power of the dimensionless energy dissipation coefficient, $A(t)\sim {t}^{p} $ . Furthermore, each case shows that streamwise variations in the integral length scales, ${L}_{uu} $ and ${L}_{vv} $ , and the Taylor microscale $\lambda $ grow according to ${L}_{uu} \sim 2{L}_{vv} \propto {(x/ M- {x}_{0} / M)}^{2/ 5} $ (for the $M= 10~\mathrm{mm} $ grid, ${L}_{uu} \propto {(x/ M- {x}_{0} / M)}^{2(1+ p)/ 5} \sim {(x/ M- {x}_{0} / M)}^{0. 44} $ ) and $\lambda \propto {(x/ M- {x}_{0} / M)}^{1/ 2} $ , respectively, at $x/ M\gt 40{\unicode{x2013}} 60$ (depending on the experimental conditions, including grid geometry), where $x$ is the streamwise distance from the grid and ${x}_{0} $ is the virtual origin. We demonstrated that in the decay region of grid turbulence, ${ u}_{\mathit{rms}}^{2} { L}_{uu}^{3} $ and ${ v}_{\mathit{rms}}^{2} { L}_{vv}^{3} $ , which correspond to Saffman’s integral, are constant for all grids and examined $R{e}_{M} $ values. However, ${ u}_{\mathit{rms}}^{2} { L}_{uu}^{5} $ and ${ v}_{\mathit{rms}}^{2} { L}_{vv}^{5} $ , which correspond to Loitsianskii’s integral, and ${ u}_{\mathit{rms}}^{2} { L}_{uu}^{2} $ and ${ v}_{\mathit{rms}}^{2} { L}_{vv}^{2} $ , which correspond to the complete self-similarity of energy spectrum and $\langle {\boldsymbol{u}}^{2} \rangle \sim {t}^{- 1} $ , are not constant. Consequently, we conclude that grid turbulence is a type of Saffman turbulence for the examined $R{e}_{M} $ range of 6700–33 000 ( $R{e}_{\lambda } = 27{\unicode{x2013}} 112$ ) regardless of grid geometry.


Corresponding author

Email address for correspondence:


Hide All
Antonia, R. A., Lee, S. K., Djenidi, L., Lavoie, P. & Danaila, L. 2013 Invariants for slightly heated decaying grid turbulence. J. Fluid Mech. 727, 379406.
Antonia, R. A., Smalley, R. J., Zhou, T., Anselmet, F. & Danaila, L. 2003 Similarity of energy structure functions in decaying homogeneous isotropic turbulence. J. Fluid Mech. 487, 245269.
Batchelor, G. K. 1948 Energy decay and self-preserving correlation functions in isotropic turbulence. Q. Appl. Maths. 6, 97114.
Batchelor, G. K. 1949 The role of big eddies in homogeneous turbulence. Proc. R. Soc. Lond. A 195, 513532.
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Batchelor, G. K. & Proudman, I. 1956 The large-scale structure of homogeneous turbulence. Phil. Trans. R. Soc. A 248, 369405.
Batchelor, G. K. & Townsend, A. A. 1948 Decay of turbulence in the final period. Proc. R. Soc. Lond. A 194, 527543.
Bennett, J. C. & Corrsin, S. 1978 Small Reynolds number nearly isotropic turbulence in a straight duct and a contraction. Phys. Fluids 21, 21292140.
Burattini, P., Lavoie, P., Agrawal, A., Djenidi, L. & Antonia, R. A. 2006 Power law of decaying homogeneous isotropic turbulence at low Reynolds number. Phys. Rev. E 73, 066304.
Chasnov, J. R. 1993 Computation of the Loitsyansky integral in decaying isotropic turbulence. Phys. Fluids 5, 25792581.
Comte-Bellot, G. & Corrsin, S. 1966 The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657682.
Davidson, P. A. 2004 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.
Davidson, P. A. 2011 The minimum energy decay rate in quasi-isotropic grid turbulence. Phys. Fluids 23, 085108.
Dryden, H. L. 1943 A review of the statistical theory of turbulence. Q. Appl. Maths. 1, 742.
Gad-El-Hak, M. & Corrsin, S. 1974 Measurements of the nearly isotropic turbulence behind a uniform jet grid. J. Fluid Mech. 62, 115143.
George, W. K. 1992 The decay of homogeneous isotropic turbulence. Phys. Fluids 4, 14921509.
George, W. K. & Davidson, L 2004 Role of initial conditions in establishing asymptotic flow behaviour. AIAA J. 42, 438446.
Hinze, J. O. 1959 Turbulence. McGraw-Hill.
Huang, M. J. & Leonard, A. 1994 Power-law decay of homogeneous turbulence at low Reynolds numbers. Phys. Fluids 6, 37653775.
Ishida, T., Davidson, P. A. & Kaneda, Y. 2006 On the decay of isotropic turbulence. J. Fluid Mech. 564, 455475.
Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K. & Uno, A. 2003 Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15, 2124.
Kang, H. S., Chester, S. & Meneveau, C. 2003 Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J. Fluid Mech. 480, 129160.
von Kármán, T. & Lin, C. C. 1949 On the concept of similarity in the theory of isotropic turbulence. Rev. Mod. Phys. 21, 516519.
Kolmogorov, A. N. 1941 On the degeneration of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR 31, 538540.
Korneyev, A. I. & Sedov, L. I. 1976 Theory of isotropic turbulence and its comparison with experimental data. Fluid Mech. Sov. Res. 5, 3747.
Krogstad, P. Å & Davidson, P. A. 2010 Is grid turbulence Saffman turbulence? J. Fluid Mech. 642, 373394.
Lavoie, P., Burattini, P., Djenidi, L. & Antonia, R. A. 2005 Effect of initial conditions on decaying grid turbulence at low ${R}_{\lambda } $ . Exp. Fluids 39, 865874.
Lavoie, P., Djenidi, L. & Antonia, R. A. 2007 Effects of initial conditions in decaying turbulence generated by passive grids. J. Fluid Mech. 585, 395420.
Lesieur, M. 2008 Turbulence in Fluids, 4th edn. Springer.
Lesieur, M. & Ossia, S. 2000 3D isotropic turbulence at very high Reynolds numbers: EDQNM study. J. Turbul. 1, 125.
Makita, H. 1991 Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn. Res. 8, 5364.
Mohamed, M. S. & LaRue, J. C. 1990 The decay power law in grid-generated turbulence. J. Fluid Mech. 219, 195214.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. II, MIT.
Mydlarski, L. & Warhaft, Z. 1996 On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331368.
Nagata, K., Hunt, J. C. R., Sakai, Y. & Wong, H. 2011 Distorted turbulence and secondary flow near right-angled plates. J. Fluid Mech. 668, 446479.
Saffman, P. G. 1967 The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27, 581593.
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.
Schedvin, J., Stegen, G. R. & Gibson, C. H. 1974 Universal similarity at high grid Reynolds numbers. J. Fluid Mech. 65, 561579.
Speziale, C. G. & Bernard, P. S 1992 The energy decay in self-preserving isotropic turbulence revisited. J. Fluid Mech. 241, 645667.
Sreenivasan, K. R. 1984 On the scaling of the turbulence energy dissipation rate. Phys. Fluids 27, 10481051.
Sreenivasan, K. R. 1995 On the universality of the Kolmogorov constant. Phys. Fluids 7, 27782784.
Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.
Taylor, G. I. 1935 Statistical theory of turbulence. Proc. Trans. R. Soc. A 151, 421444.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed