Skip to main content Accessibility help

On drag reduction scaling and sustainability bounds of superhydrophobic surfaces in high Reynolds number turbulent flows

  • Amirreza Rastegari (a1) and Rayhaneh Akhavan (a1)


The drag reduction characteristics and sustainability bounds of superhydrophobic (SH) surfaces in high Reynolds number turbulent flows are investigated using results from direct numerical simulation (DNS) and scaling-law analysis. The DNS studies were performed, using lattice Boltzmann methods, in turbulent channel flows at bulk Reynolds numbers of $Re_{b}=3600$ ( $Re_{\unicode[STIX]{x1D70F}_{0}}\approx 222$ ) and $Re_{b}=7860$ ( $Re_{\unicode[STIX]{x1D70F}_{0}}\approx 442$ ) with SH longitudinal microgrooves or SH aligned microposts on the walls. Surface microtexture geometrical parameters corresponding to microgroove widths or micropost spacings of $4\lesssim g^{+0}\lesssim 128$ in base flow wall units and solid fractions of $1/64\leqslant \unicode[STIX]{x1D719}_{s}\leqslant 1/2$ were investigated at interface protrusion angles of $\unicode[STIX]{x1D703}_{p}=0^{\circ }$ and $\unicode[STIX]{x1D703}_{p}=-30^{\circ }$ . Analysis of the governing equations and DNS results shows that the magnitude of drag reduction is not only a function of the geometry and size of the surface microtexture in wall units, but also the Reynolds number of the base flow. A Reynolds number independent measure of drag reduction can be constructed by parameterizing the magnitude of drag reduction in terms of the friction coefficient of the base flow and the shift, $(B-B_{0})$ , in the intercept of a logarithmic law representation of the mean velocity profile in the flow with SH walls compared to the base flow, where $(B-B_{0})$ is Reynolds number independent. The scaling laws for $(B-B_{0})$ , in terms of the geometrical parameters of the surface microtexture in wall units, are presented for SH longitudinal microgrooves and aligned microposts. The same scaling laws are found to also apply to liquid-infused (LI) surfaces as long as the viscosity ratios are large, $N\equiv \unicode[STIX]{x1D707}_{o}/\unicode[STIX]{x1D707}_{i}\gtrsim 10$ . These scaling laws, in conjunction with the parametrization of drag reduction in terms of $(B-B_{0})$ , allow for a priori prediction of the magnitude of drag reduction with SH or LI surfaces in turbulent flow at any Reynolds number. For the most stable of these SH surface microtextures, namely, longitudinal microgrooves, the pressure stability bounds of the SH surface under the pressure loads of turbulent flow are investigated. It is shown that the pressure stability bounds of SH surfaces are also significantly curtailed with increasing Reynolds number of the flow. Using these scaling laws, the narrow range of SH surface geometrical parameters which can yield large drag reduction as well as sustainability in high Reynolds number turbulent flows is identified.


Corresponding author

Email address for correspondence:


Hide All
Aljallis, E., Sarshar, M. A., Datla, R., Sikka, V., Jones, A. & Choi, C. H. 2013 Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Phys. Fluids 25 (2), 025103.
Arenas-Navarro, I.2017 Numerical simulations for turbulent drag reduction using liquid infused surfaces. PhD thesis, The University of Texas at Dallas.
Bechert, D. W., Bruse, M., Hage, W., Van Der Hoeven, J. G. T. & Hoppe, G. 1997 Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 5987.10.1017/S0022112096004673
Bidkar, R. A., Leblanc, L., Kulkarni, A. J., Bahadur, V., Ceccio, S. L. & Perlin, M. 2014 Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces. Phys. Fluids 26 (8), 085108.
Checco, A., Ocko, B. M., Rahman, A., Black, C. T., Tasinkevych, M., Giacomello, A. & Dietrich, S. 2014 Collapse and reversibility of the superhydrophobic state on nanotextured surfaces. Phys. Rev. Lett. 112 (21), 216101.
Daniello, R. J., Waterhouse, N. E. & Rothstein, J. P. 2009 Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids 21 (8), 085103.
Dean, R. B. 1978 Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. Trans. ASME J. Fluids Engng 100 (2), 215223.10.1115/1.3448633
Fu, M. K., Arenas, I., Leonardi, S. & Hultmark, M. 2017 Liquid-infused surfaces as a passive method of turbulent drag reduction. J. Fluid Mech. 824, 688700.
García-Mayoral, R. & Jiménez, J. 2012 Scaling of turbulent structures in riblet channels up to Re 𝜏 ≈ 550. Phys. Fluids 24 (10), 105101.
Gose, J., Golovin, K., Boban, M., Mabry, J., Tuteja, A., Perlin, M. & Ceccio, S. 2018 Characterization of superhydrophobic surfaces for drag reduction in turbulent flow. J. Fluid Mech. 845, 560580.
Karatay, E., Tsai, P. A. & Lammertink, R. G. H. 2013 Rate of gas absorption on a slippery bubble mattress. Soft Matt. 9 (46), 1109811106.10.1039/c3sm51928g
Lagrava, D., Malaspinas, O., Latt, J. & Chopard, B. 2012 Advances in multi-domain lattice Boltzmann grid refinement. J. Comput. Phys. 231 (14), 48084822.
Ling, H., Katz, J., Fu, M. & Hultmark, M. 2017 Effect of Reynolds number and saturation level on gas diffusion in and out of a superhydrophobic surface. Phys. Rev. Fluids 2 (12), 124005.
Ling, H., Srinivasan, S., Golovin, K., McKinley, G. H., Tuteja, A. & Katz, J. 2016 High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces. J. Fluid Mech. 801, 670703.
Min, T. & Kim, J. 2004 Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16 (7), L55.
Nishino, T., Meguro, T., Nakamae, K., Matsushita, M. & Ueda, Y. 1999 The lowest surface free energy based on -CF3 alignment. Langmuir 15, 43214323.10.1021/la981727s
Park, H., Park, H. & Kim, J. 2013 A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow. Phys. Fluids 25 (11), 110815.
Park, H., Sun, G. & Kim, C.-J. 2014 Superhydrophobic turbulent drag reduction as a function of surface grating parameters. J. Fluid Mech. 747, 722734.
Philip, J. R. 1972 Flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys. 23 (3), 353372.10.1007/BF01595477
Rastegari, A. & Akhavan, R. 2015 On the mechanism of turbulent drag reduction with super-hydrophobic surfaces. J. Fluid Mech. 773, R4.
Rastegari, A. & Akhavan, R. 2018a The common mechanism of turbulent skin-friction drag reduction with super-hydrophobic longitudinal microgrooves and riblets. J. Fluid Mech. 838, 68104.
Rastegari, A. & Akhavan, R. 2018b Effect of interface dynamics on drag reduction and sustainability of superhydrophobic and liquid-infused surfaces in turbulent flow. Bull. Am. Phys. Soc. 63 (13), 143.
Reholon, D. & Ghaemi, S. 2018 Plastron morphology and drag of a superhydrophobic surface in turbulent regime. Phys. Rev. Fluids 3, 104003.
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89109.
Samaha, M. A., Tafreshi, H. V. & Gad-el Hak, M. 2012 Influence of flow on longevity of superhydrophobic coatings. Langmuir 28 (25), 97599766.
Schellenberger, F., Encinas, N., Vollmer, D. & Butt, H.-J. 2016 How water advances on superhydrophobic surfaces. Phys. Rev. Lett. 116 (9), 096101.
Schewe, G. 1983 On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow. J. Fluid Mech. 134, 311328.
Schönecker, C., Baier, T. & Hardt, S. 2014 Influence of the enclosed fluid on the flow over a microstructured surface in the Cassie state. J. Fluid Mech. 740, 168195.10.1017/jfm.2013.647
Seo, J., García-Mayoral, R. & Mani, A. 2015 Pressure fluctuations and interfacial robustness in turbulent flows over superhydrophobic surfaces. J. Fluid Mech. 783, 448473.10.1017/jfm.2015.573
Seo, J. & Mani, A. 2016 On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces. Phys. Fluids 28, 025110.
Sillero, J. A., Jiménez, J. & Moser, R. D. 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to 𝛿+ ≈ 2000. Phys. Fluids 25 (10), 105102.
Spalart, P. R. & McLean, D. 2011 Drag reduction: enticing turbulence, and then an industry. Phil. Trans. R. Soc. Lond. A 369, 15561569.
Srinivasan, S., Kleingartner, J. A., Gilbert, J. B., Cohen, R. E., Milne, A. J. B. & McKinley, G. H. 2015 Sustainable drag reduction in turbulent Taylor–Couette flows by depositing sprayable superhydrophobic surfaces. Phys. Rev. Lett. 114 (1), 014501.10.1103/PhysRevLett.114.014501
Succi, S. 2001 The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Oxford University Press.
Tsuji, Y., Fransson, J. H. M., Alfredsson, P. H. & Johansson, A. V. 2007 Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 585, 140.10.1017/S0022112007006076
Van Buren, T. & Smits, A. J. 2017 Substantial drag reduction in turbulent flow using liquid-infused surfaces. J. Fluid Mech. 827, 448456.
Wexler, J. S., Jacobi, I. & Stone, H. A. 2015 Shear-driven failure of liquid-infused surfaces. Phys. Rev. Lett. 114 (16), 168301.10.1103/PhysRevLett.114.168301
Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P. & Bocquet, L. 2007 Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids 19 (12), 123601.10.1063/1.2815730
Zanoun, E.-S., Nagib, H. & Durst, F. 2009 Refined c f relation for turbulent channels and consequences for high-re experiments. Fluid Dyn. Res. 41 (2), 021405.
Zhang, J., Tian, H., Yao, Z., Hao, P. & Jiang, N. 2015 Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow. Exp. Fluids 56 (9), 179.
Zheng, Q.-S., Yu, Y. & Zhao, Z.-H. 2005 Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir 21 (26), 1220712212.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

On drag reduction scaling and sustainability bounds of superhydrophobic surfaces in high Reynolds number turbulent flows

  • Amirreza Rastegari (a1) and Rayhaneh Akhavan (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed