Skip to main content Accessibility help
×
Home

Obstructed and channelized viscoplastic flow in a Hele-Shaw cell

  • D. R. Hewitt (a1) (a2), M. Daneshi (a3), N. J. Balmforth (a2) and D. M. Martinez (a3)

Abstract

A theoretical study is presented of the flow of viscoplastic fluid through a Hele-Shaw cell that contains various kinds of obstructions. Circular and elliptical blockages of the cell are considered together with stepwise contractions or expansions in slot width, all within the simplifying approximation of a narrow gap. Specific attention is paid to the flow patterns that develop around the obstacles, particularly any stagnant plugged regions, and the asymptotic limits of relatively small or large yield stress. Periodic arrays of circular contractions or expansions are studied to explore the interference between obstructions. Finally, viscoplastic flow through a cell with randomly roughened walls is examined, and it is shown that constructive interference of local contractions and expansions leads to a pronounced channelization of the flow. An optimization algorithm based on minimization of the pressure drop is derived to construct the path of the channels in the limit of relatively large yield stress or, equivalently, relatively slow flow.

Copyright

Corresponding author

Email address for correspondence: drh39@cam.ac.uk

References

Hide All
Alishaev, M. G., Entov, V. M. & Segalov, A. E. 1969 Elementary solutions of plane nonlinear filtration problems. Fluid Dyn. 4, 7784.
Atkinson, C. & El-Ali, K. 1992 Some boundary value problems for the Bingham model. J. Non-Newtonian Fluid Mech. 41, 339363.
Balmforth, N. J. & Craster, R. V. 1999 A consistent thin-layer theory for Bingham plastics. J. Non-Newtonian Fluid Mech. 84, 6581.
Balmforth, N. J., Frigaard, I. A. & Ovarlez, G. 2014 Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech. 46, 121146.
Barenblatt, G. I., Entov, V. M. & Ryzhik, V. M. 1989 Theory of Fluid Flows Through Natural Rocks. Kluwer Academic.
Beris, A. N., Tsamopoulos, J. A., Armstrong, R. C. & Brown, R. A. 1985 Creeping motion of a sphere through a Bingham plastic. J. Fluid Mech. 158, 219244.
Bernadiner, M. G. & Protopapas, A. L. 1994 Progress on the theory of flow in geologic media with threshold gradient. J. Environ. Sci. Health A 29, 249275.
Bittleston, S. H., Ferguson, J. & Frigaard, I. A. 2002 Mud removal and cement placement during primary cementing of an oil well – laminar non-Newtonian displacements in an eccentric annular Hele-Shaw cell. J. Engng Maths 43, 229253.
Bleyer, J. & Coussot, P. 2014 Breakage of non-Newtonian character in flow through a porous medium: evidence from numerical simulation. Phys. Rev. E 89 (6), 063018.
Brush, D. J. & Thomson, N. R. 2003 Fluid flow in synthetic rough-walled fractures: Navier–Stokes, Stokes, and local cubic law simulations. Water Resour. Res. 39, 1085.
Chevalier, T., Chevalier, C., Clain, X., Dupla, J. C., Canou, J., Rodts, S. & Coussot, P. 2013 Darcy’s law for yield stress fluid flowing through a porous medium. J. Non-Newtonian Fluid Mech. 195, 5766.
Chevalier, T., Rodts, S., Chateau, X., Chevalier, C. & Coussot, P. 2014 Breaking of non-Newtonian character in flows through a porous medium. Phys. Rev. E 89, 023002.
Coussot, P. 1999 Saffman–Taylor instability in yield-stress fluids. J. Fluid Mech. 380, 363376.
Dontsov, E. V. & Peirce, A. P. 2014 Slurry flow, gravitational settling and a proppant transport model for hydraulic fractures. J. Fluid Mech. 760, 567590.
Entov, V. M. 1970 Analogy between equations of plane filtration and equations of longitudinal shear of nonlinearly elastic and plastic solids. Z. Angew. Math. Mech. 34, 153164.
Gustafson, G., Claesson, J. & Fransson, A. 2013 Steering parameters for rock grouting. J. Appl. Maths 2013, 269594.
Homsy, G. M., Aref, H., Breuer, K. S., Bush, J. W. M., Clanet, C., Fermigier, M., Hochgreb, S., Koseff, J. R., Munson, B. R., Powell, K. G. et al. 2008 Multimedia Fluid Mechanics DVD-ROM. Cambridge University Press.
Huuse, M., Jackson, C. A., Van Rensbergen, P., Davies, R. J., Flemings, P. B. & Dixon, R. J. 2010 Subsurface sediment remobilization and fluid flow in sedimentary basins: an overview. Basin Res. 22, 342360.
Lecampion, B. & Garagash, D. I. 2014 Confined flow of suspensions modelled by a frictional rheology. J. Fluid Mech. 759, 197235.
Lee, J. S. 1969 Slow viscous flow in a lung alveoli model. J. Biomech. 2, 187198.
Majidi, R., Miska, S. Z., Yu, M., Thompson, L. G. & Zhang, J. 2010 Quantitative analysis of mud losses in naturally fractured reservoirs: the effect of rheology. SPE Dril. Compl. 25, 509.
Pascal, H. 1981 Nonsteady flow through porous media in the presence of a threshold gradient. Acta Mechanica 39, 207224.
Pelipenko, S. & Frigaard, I. A. 2004 Two-dimensional computational simulation of eccentric annular cementing displacements. IMA J. Appl. Maths 69, 557583.
Phillips, O. M. 2009 Geological Fluids Dynamics. Cambridge University Press.
Roustaei, A. & Frigaard, I. A. 2013 The occurrence of fouling layers in the flow of a yield stress fluid along a wavy-walled channel. J. Non-Newtonian Fluid Mech. 198, 109124.
Talon, L. & Bauer, D. 2013 On the determination of a generalized Darcy equation for yield-stress fluid in porous media using a lattice-Boltzmann TRT scheme. Eur. Phys. J. E 36, 139.
Tsay, R.-Y. & Weinbaum, S. 1991 Viscous flow in a channel with periodic cross-bridging fibres: exact solutions and Brinkman approximation. J. Fluid Mech. 226, 125148.
Vradis, G. C. & Protopapas, A. L. 1993 Macroscopic conductivities for flow of Bingham plastics in porous media. J. Hydraul. Engng ASCE 119, 95108.
Walton, I. C. & Bittleston, S. H. 1991 The axial flow of a Bingham plastic in a narrow eccentric annulus. J. Fluid Mech. 222, 3960.
Yeo, W. 2001 Effect of contact obstacles on fluid flow in rock fractures. Geosci. J. 5, 139143.
Zhang, Z., Nemcik, J. & Ma, S. 2013 Micro- and macro-behaviour of fluid flow through rock fractures: an experimental study. Hydrogeol. J. 21, 17171729.
Zimmerman, R. W. & Bodvarsson, G. S. 1996 Hydraulic conductivity of rock fractures. Trans. Porous Med. 23, 130.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Obstructed and channelized viscoplastic flow in a Hele-Shaw cell

  • D. R. Hewitt (a1) (a2), M. Daneshi (a3), N. J. Balmforth (a2) and D. M. Martinez (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed