Skip to main content Accessibility help

A numerical study of an inline oscillating cylinder in a free stream

  • Justin S. Leontini (a1), David Lo Jacono (a1) (a2) (a3) and Mark C. Thompson (a1)


Simulations of a cylinder undergoing externally controlled sinusoidal oscillations in the free stream direction have been performed. The frequency of oscillation was kept equal to the vortex shedding frequency from a fixed cylinder, while the amplitude of oscillation was varied, and the response of the flow measured. With varying amplitude, a rich series of dynamic responses was recorded. With increasing amplitude, these states included wakes similar to the Kármán vortex street, quasiperiodic oscillations interleaved with regions of synchronized periodicity (periodic on multiple oscillation cycles), a period-doubled state and chaotic oscillations. It is hypothesized that, for low to moderate amplitudes, the wake dynamics are controlled by vortex shedding at a global frequency, modified by the oscillation. This vortex shedding is frequency modulated by the driven oscillation and amplitude modulated by vortex interaction. Data are presented to support this hypothesis.


Corresponding author

Email address for correspondence:


Hide All
1. Al-Mdallal, Q. M., Lawrence, K. P. & Kocabiyik, S. 2007 Forced streamwise oscillations of a circular cylinder: locked-on modes and resulting fluid forces. J. Fluids Struct. 23, 681701.
2. Barbi, C., Favier, D. P., Maresca, C. A. & Telionis, D. P. 1986 Vortex shedding and lock-on of a circular cylinder in oscillatory flow. J. Fluid Mech. 170, 527544.
3. Bishop, R. E. D. & Hassan, A. Y. 1964 The lift and drag forces on a circular cylinder oscillating in a flowing fluid. Proc. R. Soc. Lond. A 277 (1368), 5175.
4. Carberry, J., Sheridan, J. & Rockwell, D. 2005 Controlled oscillations of a cylinder: forces and wake modes. J. Fluid Mech. 538, 3169.
5. Cetiner, O. & Rockwell, D. 2001 Streamwise oscillations of a cylinder in a steady current. Part 1. Locked-on states of vortex formation and loading. J. Fluid Mech. 427, 128.
6. Chowning, J. M. 1973 The synthesis of complex audio spectra by means of frequency modulation. J. Audio Engng Soc. 21 (7), 526534.
7. Feng, L. H. & Wang, J. J. 2010 Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. J. Fluid Mech. 662, 232259.
8. Griffin, O. M. & Hall, M. S. 1991 Vortex shedding lock-on and flow-control in bluff body wakes – review. J. Fluids Eng. 113 (4), 526537.
9. Griffin, O. M. & Ramberg, S. E. 1976 Vortex shedding from a cylinder vibrating in line with an incident uniform flow. J. Fluid Mech. 75 (2), 257271.
10. Horowitz, M. & Williamson, C. H. K. 2010 Vortex-induced vibration of a rising and falling cylinder. J. Fluid Mech. 662, 352383.
11. Jauvtis, N. & Williamson, C. H. K. 2005 The effect of two degrees of freedom on vortex-induced vibration at low mass and damping. J. Fluid Mech. 509, 2362.
12. Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods of the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414443.
13. Karniadakis, G. E. & Triantafyllou, G. S. 1989 Frequency selection and asymptotic states in laminar wakes. J. Fluid Mech. 199, 441469.
14. Kim, B. H. & Williams, D. R. 2006 Nonlinear coupling of fluctuating drag and lift on cylinders undergoing forced oscillations. J. Fluid Mech. 559, 335353.
15. Konstantinidis, E. & Balabani, S. 2007 Symmetric vortex shedding in the near wake of a circular cylinder due to streamwise perturbations. J. Fluids Struct. 23, 10471063.
16. Konstantinidis, E., Balabani, S. & Yianneskis, M. 2005 The timing of vortex shedding in a cylinder wake imposed by periodic inflow perturbations. J. Fluid Mech. 543, 4555.
17. Konstantinidis, E. & Bouris, D. 2009 Effect of nonharmonic forcing on bluff-body vortex dynamics. Phys. Rev. E 79, 045303(R).
18. Koopman, G. H. 1967 The vortex wakes of vibrating cylinders at low Reynolds numbers. J. Fluid Mech. 28, 501512.
19. Leontini, J. S., Stewart, B. E., Thompson, M. C. & Hourigan, K. 2006 Wake state and energy transitions of an oscillating cylinder at low reynolds number. Phys. Fluids 18 (6), 067101.
20. Leontini, J. S., Thompson, M. C. & Hourigan, K. 2007 Three-dimensional transition in the wake of a transversely oscillating cylinder. J. Fluid Mech. 577, 79104.
21. Lo Jacono, D., Leontini, J. S., Thompson, M. C. & Sheridan, J. 2010 Modification of three-dimensional transition in the wake of a rotationally oscillating cylinder. J. Fluid Mech. 643, 349362.
22. Morse, T. L. & Williamson, C. H. K. 2009 Prediction of vortex-induced vibration response by employing controlled motion. J. Fluid Mech. 634, 539.
23. Nazarinia, M., Lo Jacono, D., Thompson, M. C. & Sheridan, J. 2009 Flow behind a cylinder forced by a combination of oscillatory translational and rotational motions. Phys. Fluids 21 (5), 051701.
24. Ongoren, A. & Rockwell, D. 1988 Flow structure from an oscillating cylinder. Part 2. Mode competition in the near wake. J. Fluid Mech. 191, 225245.
25. Perdikaris, P. G., Kaitsis, L. & Triantafyllou, G. S. 2009 Chaos in a cylinder wake due to forcing at the Strouhal frequency. Phys. Fluids 21, 101705.
26. Sarpkaya, T. 2004 A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19 (4), 389447.
27. Staubli, T. 1983 Calculation of the vibration of an elastically mounted cylinder using experimental data from forced oscillation. J. Fluids Engng 105, 225229.
28. Tanida, Y., Okajima, A. & Watanabe, Y. 1973 Stability of a circular cylinder oscillating in uniform flow or in a wake. J. Fluid Mech. 61 (4), 769784.
29. Thiria, B., Goujon-Durand, S. & Wesfreid, J. E. 2006 The wake of a cylinder performing rotary oscillations. J. Fluid Mech. 560, 123147.
30. Thiria, B. & Wesfreid, J. E. 2007 Stability properties of forced wakes. J. Fluid Mech. 579, 137161.
31. Thompson, M. C., Hourigan, K. & Sheridan, J. 1996 Three-dimensional instabilities in the wake of a circular cylinder. Exp. Therm. Fluid Sci. 12, 190196.
32. Williamson, C. H. K. & Govardhan, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413455.
33. Williamson, C. H. K. 1988 The existence of two stages in the transition to three-dimensionality of a cylinder wake. Phys. Fluids 31 (11), 31653168.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

A numerical study of an inline oscillating cylinder in a free stream

  • Justin S. Leontini (a1), David Lo Jacono (a1) (a2) (a3) and Mark C. Thompson (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed