Skip to main content Accessibility help
×
Home

Numerical simulation of thermal convection in a two-dimensional finite box

  • Isaac Goldhirsch (a1), Richard B. Pelz (a2) and Steven A. Orszag (a3)

Abstract

The problems of dynamical onset of convection, textural transitions and chaotic dynamics in a two-dimensional, rectangular Rayleigh-Bénard system have been investigated using well-resolved, pseudo-spectral simulations. All boundary conditions are taken to be no-slip. It is shown that the process of creating the temperature gradient in the system, is responsible for roll creation at the side boundaries. These rolls either induce new rolls or move into the interior of the cell, depending on the rate of heating. Complicated flow patterns and textural transitions are observed in both non-chaotic and chaotic flow regimes. Multistability is frequently observed. Intermediate-Prandtl-number fluids (e.g. 0.71) have a quasiperiodic time dependence up to Rayleigh numbers of order 106. When the Prandtl number is raised to 6.8, one observes aperiodic (chaotic) flows of non-integer dimension. In this case roll merging and separation is observed to be an important feature of the dynamics. In some cases corner rolls are observed to migrate into the interior of the cell and to grow into regular rolls; the large rolls may shrink and retreat into corners. The basic flow patterns observed do not change qualitatively when the chaotic regime is entered.

Copyright

References

Hide All
Ahlers, G. & Behringer, R. P., 1978 The Rayleigh–Bénard instability and the evolution of turbulence. Prog. Theor. Phys. Supp. 64, 186201.
Ahlers, G., Cross, M. C., Hohenberg, P. C. & Safran, S., 1981 The amplitude equation near the convective threshold: application to time-dependent heating experiments. J. Fluid Mech. 110, 297334.
Bolton, E. W., Busse, F. H. & Clever, R. M., 1986 Oscillatory instabilities of convective rolls at intermediate Prandtl numbers. J. Fluid Mech. 164, 469485.
Boussinesq, J.: 1903 Théorie Analytique de Chaleur, vol. 2, p. 172. Paris: Gauthier-Villars.
Busse, F. F.: 1972 The oscillatory instability of convection rolls in a low Prandtl number fluid. J. Fluid Mech. 52, 97112.
Busse, F. H.: 1978 Nonlinear properties of thermal convection. Rep. Prog. Phys. 41, 1929.
Busse, F. H. & Clever, R. M., 1979 Instabilities of convection rolls in a fluid of moderate Prandtl number. J. Fluid Mech. 91, 319335.
Busse, F. H. & Frick, H., 1985 Square pattern convection in fluids with strongly temperature dependent viscosity. J. Fluid Mech. 150, 451465.
Chandrasekhar, S.: 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Ciliberto, S. & Gollub, J. P., 1984 Pattern competition leads to chaos. Phys. Rev. Lett. 52, 922.
Cross, M. C.: 1982a Ingredients of a theory of convective textures close to onset. Phys. Rev. A A25, 10651076.
Cross, M. C.: 1982b Wave-number selection by soft boundaries near threshold. Phys. Rev. A A29, 391392.
Cross, M. C., Daniels, P. G., Hohenberg, P. C. & Siggia, E. D., 1980 Effect of distant sidewalls on wave-number selection in Rayleigh–Bénard convection. Phys. Rev. Lett. 45, 898901.
Cross, M. C., Daniels, P. G., Hohenberg, P. C. & Siggia, E. D., 1983a Phase-winding solutions in a finite container above the convective threshold. J. Fluid Mech. 127, 155183.
Cross, M. C., Hohenberg, P. C. & Lücke, M. 1983b Forcing of convection due to time-dependent heating near threshold. J. Fluid Mech. 136, 155183.
Cross, M. C. & Newell, A. C., 1984 Convective patterns in large aspect ratio systems. Physica 10D, 299328.
Curry, J. H.: 1978 A generalized Lorenz system. Comm. Math. Phys. 60, 193204.
Curry, J. C., Herring, J. R., Loncaric, J. & Orszag, S. A., 1984 Order and disorder in two- and three-dimensional Bénard convection. J. Fluid Mech. 147, 138.
Cvitanovic, P.: 1984 Universality in Chaos. Bristol: Adam Hilger.
Frick, H. & Müller, U. 1983 Oscillatory Hele-Shaw convection. J. Fluid Mech. 126, 521532.
Gershuni, G. Z. & Zhukhovitskii 1976 Convective Stability of Incompressible Fluids. Jerusalem: Keter.
Giglio, M., Musazzi, S. & Perini, U., 1981 Transition to chaotic behaviour via a reproducible sequence of period doubling bifurcations. Phys. Rev. Lett. 47, 243246.
Gollub, J. P. & Benson, S. V., 1980 Many routes to turbulent convection. J. Fluid Mech. 100, 449470.
Gollub, J. P. & McCarriar, A. R., 1982 Convection patterns in Fourier space. Phys. Rev. A A26, 34703476.
Gollub, J. P., McCarriar, A. R. & Steinman, J. F., 1982 Convective pattern evolution and secondary instabilities. J. Fluid Mech. 125, 259281.
Gotlieb, D. & Orszag, S. A., 1977 Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia.
Grassberger, P. & Procaccia, I., 1983 Characterization of strange attractors. Phys. Rev. Lett. 50, 346.
Greenside, H. S., Ahlers, G., Hohenberg, P. C. & Walden, R. W., 1982 A simple stochastic model for the onset of turbulence in Rayleigh–Bénard convection. Physica 5D, 322334.
Greenside, H. S., Coughran Jr., W. M. & Schryer, N. L. 1982 Nonlinear pattern formation near the onset of Rayleigh–Bénard convection. Phys. Rev. Lett. 49, 726729.
Grötzbach, G.: 1982 Direct numerical simulation of laminar and turbulent Bénard convection. J. Fluid Mech. 119, 2753.
Grötzbach, G.: 1983 Spatial resolution requirement for direct numerical simulation of Rayleigh–Bénard convection. J. Comp. Phys. 49, 241264.
Guckenheimer, J. & Holmes, P., 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer.
Haidvogel, D. B. & Zang, T., 1979 The accurate solution of Poisson's equation by expansion in Chebyshev polynomials. J. Comp. Phys. 30, 167180.
Knobloch, E., Moore, D. R., Toomre, J. & Weiss, N. O., 1986 Transitions to chaos in two-dimensional double-diffusive convection. J. Fluid Mech. 166, 409448.
Korpela, S. A., Gozum, D. & Baxi, C. B., 1973 Intl J. Heat Mass Transfer 16, 1683.
Koster, J. N. & Müller, U. 1984 Oscillatory convection in vertical slots. J. Fluid Mech. 139, 363390.
Libchaber, A. & Maurer, J., 1980 Une expérience de Rayleigh–Bénard de géométric réduite; multiplication, accrochage et démultiplication de fréquences. J. Phys. (Paris) 41 Colloque C3, 5156.
Lorenz, E. N.: 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130.
McLaughlin, J. B. & Orszag, S. A., 1982 Transition from periodic to chaotic thermal convection. J. Fluid Mech. 122, 123142.
Malraison, B., Atten, P., Berge, P. & Dubois, M., 1983 Dimension of strange attractors: an experimental determination for the chaotic regime of two convective systems. J. Physique Lett. 44, L-897L-902.
Moore, D. R. & Weiss, N. O., 1973 Two-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 58, 289312.
Newell, A. C. & Whitehead, J. A., 1969 Finite bandwidth, finite amplitude convection. J. Fluid Mech. 38, 279303.
Orszag, S. A., Israeli, M. & Deville, M. O., 1986 Boundary conditions for incompressible flows. J. Sci. Comp. 1, 75111.
Orszag, S. A. & Patera, P. T., 1983 Secondary instability of wall-bounded shear flows. J. Fluid Mech. 128, 347385.
Schlüter, A., Lortz, D. & Busse, F., 1965 On the stability of steady finite amplitude convection. J. Fluid Mech. 35, 129144.
Segel, L.: 1969 Distant side walls cause slow modulation of cellular convection. J. Fluid Mech. 38, 203224.
Siggia, E. D. & Zippelius, A., 1981a Dynamics of defects in Rayleigh–Bénard convection. Phys. Rev. A A24, 10361049.
Siggia, E. D. & Zippelius, A., 1981b Pattern selection in Rayleigh–Bénard convection near threshold. Phys. Rev. Lett. 47, 835.
Takens, F.: 1981a In Proc. Symp. on Dynamical Systems and Turbulence, University of Warwick, 1979–80 (ed. D. A. Rand & L. S. Young). Springer.
Takens, F.: 1981b Invariants related to dimension and entropy. Proc. 13th Brazilian Colloquium on Mathematics (unpublished).
Yahata, H.: 1984 Onset of chaos in the Rayleigh–Bénard convection. Prog. Theor. Phys. Supp. 79, 2674.
Zippelius, A. & Siggia, E. D., 1982 Disappearance of stable convection between free-slip boundaries. Phys. Rev. A A26, 17881790.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Numerical simulation of thermal convection in a two-dimensional finite box

  • Isaac Goldhirsch (a1), Richard B. Pelz (a2) and Steven A. Orszag (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed