Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-01T18:40:21.373Z Has data issue: false hasContentIssue false

A numerical model of the hydrodynamics of the thermal bar

Published online by Cambridge University Press:  26 April 2006

Duncan E. Farrow
Affiliation:
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK

Abstract

The thermal bar phenomenon is modelled numerically by the natural convection of a fluid contained in a two-dimensional triangular domain. The non-rotating case considered here is appropriate to laboratory models of the thermal bar. Three sets of results are presented reflecting varying degrees of nonlinearity. The results are discussed in relation to available theoretical and experimental results.

Type
Research Article
Copyright
© 1995 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armfield, S. W. 1991 Finite-difference solutions of the Navier-Stokes equations on staggered and non-staggered grids. Computers Fluids 20, 117.Google Scholar
Bennett, J. R. 1971 Thermally driven lake currents during the spring and fall transition periods In Proc. 14th Conf. Great Lakes Res. pp. 535544. Intl Assoc. Great Lakes Res.
Elliott, G. H. 1970 A mathematical study of the thermal bar. In Proc. 13th Conf. Great Lakes Res. 545554. Intl Assoc. Great Lakes Res.
Elliott, G. H. & Elliott, J. A. 1969 Small-scale model of the thermal bar. In Proc. 12th Conf. Great Lakes Res. pp. 553557. Intl Assoc. Great Lakes Res.
Elliott, G. H. & Elliott, J. A. 1970 Laboratory studies on the thermal bar. In Proc. 13th Conf. Great Lakes Res. pp. 413418. Intl Assoc. Great Lakes Res.
Farrow, D. E. 1995 An asymptotic model of the hydrodynamics of the thermal bar. J. Fluid Mech. 289, 129140 (referred to herein as I).Google Scholar
Gebhart, B., Jaluria, Y., Mahajan, R. L. & Sammakia, B. 1988 Buoyancy-Induced Flows and Transport. Hemisphere.
Huang, J. C. K. 1972 The thermal bar. Geophys. Fluid Dyn. 3, 128.Google Scholar
Hubbard, D. W. & Spain, J. S. 1973 The structure of the early spring thermal bar in Lake Superior. In Proc. 16th Conf. Great Lakes Res. pp. 735742. Intl Assoc. Great Lakes Res.
Ivey, G. N. & Hamblin, P. F. 1989 Convection near the temperature of maximum density for high Rayleigh number, low aspect ratio, rectangular cavities. Trans. ACME C: J. Heat Transfer 111, 100105.Google Scholar
Kay, A., Kuiken, H. K. & Merkin, J. H. 1995 Boundary-layer analysis of the thermal bar. J. Fluid Mech. 303, 253278.Google Scholar
Kreyman, K. D. 1989 Thermal bar based on laboratory experiments. Oceanology 29, 695697.Google Scholar
Leonard, B. P. 1979 A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Meth. Appl. Mech. Engng 19, 5998.Google Scholar
Malm, J. 1994 Thermal bar dynamics; spring thermo-and hydrodynamics in large temperate lakes PhD Thesis, Lund University, Sweden
Malm, J., Grahn, L., Mironov, D. & Terzhevik, A. 1993 Field investigation the thermal bar in Lake Ladoga, spring 1991 Nordic Hydrology 24, 339358.Google Scholar
Malm, J., Mironov, D., Terzhevik, A. & Jönsson, L. 1994 Investigation of the spring thermal regime in Lake Ladoga using field and satellite data. Limnol. Oceanogr. 39, 13331348.Google Scholar
Malm, J. & Zilitinkevich, S. S. 1994 Temperature distribution and current system in a convectively mixed lake. Boundary Layer Met. 71, 219234.Google Scholar
Patankar, S. V. 1980 Numerical Heat Transfer and Fluid Flow. Hemisphere.
Rodgers, G. K 1968 Heat advection within Lake Ontario in spring and surface water transparency associated with the thermal bar. In Proc. 11th Conf. Great Lakes Res. pp. 942950. Intl Assoc. Great Lakes Res.
Zilitinkevich, S. S.Kreiman, K. D. & Terzhevik, A. YU. 1992 The thermal bar. J. Fluid Mech. 236, 2742.Google Scholar