Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T03:47:22.363Z Has data issue: false hasContentIssue false

Numerical characterization of three-dimensional bluff body shear layer behaviour

Published online by Cambridge University Press:  21 June 2016

Daniel T. Prosser*
Affiliation:
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Marilyn J. Smith
Affiliation:
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
*
Email address for correspondence: dpross1100@msn.com

Abstract

Three-dimensional bluff body aerodynamics are pertinent across a broad range of engineering disciplines. In three-dimensional bluff body flows, shear layer behaviour has a primary influence on the surface pressure distributions and, therefore, the integrated forces and moments. There currently exists a significant gap in understanding of the flow around canonical three-dimensional bluff bodies such as rectangular prisms and short circular cylinders. High-fidelity numerical experiments using a hybrid turbulence closure that resolves large eddies in separated wakes close this gap and provide new insights into the unsteady behaviour of these bodies. A time-averaging technique that captures the mean shear layer behaviours in these unsteady turbulent flows is developed, and empirical characterizations are developed for important quantities, including the shear layer reattachment distance, the separation bubble pressure, the maximum reattachment pressure, and the stagnation point location. Many of these quantities are found to exhibit a universal behaviour that varies only with the incidence angle and face shape (flat or curved) when an appropriate normalization is applied.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, W., Rausch, R. & Bonhaus, D. 1996 Implicit/multigrid algorithms for incompressible turbulent flows on unstructured grids. J. Comput. Phys. 128 (2), 391408.Google Scholar
Ayoub, A. & Karamcheti, K. 1982 An experiment on the flow past a finite circular cylinder at high subcritical and supercritical Reynolds numbers. J. Fluid Mech. 118, 126.CrossRefGoogle Scholar
Biedron, R. T., Vatsa, V. N. & Atkins, H. L. 2005 Simulation of unsteady flows using an unstructured Navier–Stokes solver on moving and stationary grids. In Proceedings of the 23rd AIAA Applied Aerodynamics Conference, Toronto, Ontario, Canada.Google Scholar
Chorin, A. 1967 A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2 (1), 1226.Google Scholar
Cicolani, L., Lusardi, J., Greaves, L., Robinson, D., Rosen, A. & Raz, R.2010 Flight test results for the motions and aerodynamics of a cargo container and a cylindrical slung load. Tech. Rep. NASA/TP2010-216380. National Aeronautics and Space Administration.Google Scholar
Cicolani, L. S., Cone, A., Theron, J., Robinson, D., Lusardi, J., Tischler, M. B., Rosen, A. & Raz, R. 2009 Flight test and simulation of a cargo container slung load in forward flight. J. Am. Helicopter Soc. 54 (3), 118.Google Scholar
Greenwell, D. I. 2011 Modelling of static aerodynamics of helicopter underslung loads. Aeronaut. J. 115 (1166), 201219.Google Scholar
Haller, G. 2005 An objective definition of a vortex. J. Fluid Mech. 525, 126.Google Scholar
Hodara, J., Lind, A. H., Jones, A. R. & Smith, M. J. 2016 Collaborative investigation of the aerodynamic behavior of airfoils in reverse flow. J. Am. Helicopter Soc. 61 (3), July 2016 (in press).Google Scholar
Hodara, J. & Smith, M. J. 2015 Improved turbulence and transition closures for separated flows. In 41st European Rotorcraft Forum, Munich, Germany. Curran Associates Inc.Google Scholar
Hoerner, S. F. 1958 Fluid-Dynamic Drag. Hoerner Fluid Dynamics.Google Scholar
Kim, W.-W. & Menon, S. 1999 An unsteady incompressible Navier–Stokes solver for large eddy simulation of turbulent flows. Intl J. Numer. Meth. Fluids 31 (6), 9831017.Google Scholar
Liggett, N. & Smith, M. J. 2012 Temporal convergence criteria for time-accurate viscous simulations of separated flows. Comput. Fluids 66, 140156.Google Scholar
Lynch, C. E. & Smith, M. J. 2011 Extension and exploration of a hybrid turbulence model on unstructured grids. AIAA J. 49 (11), 25852590.CrossRefGoogle Scholar
Mantri, R., Raghav, V., Komerath, N. & Smith, M. J. 2011 Stability prediction of sling load dynamics using wind tunnel models. In Proceedings of the 67th American Helicopter Society Annual Forum, Virginia Beach, Virginia. Curran Associates Inc.Google Scholar
Matsumoto, M., Ishizaki, H., Matsuoka, C., Daito, Y., Ichikawa, Y. & Shimahara, A. 1998 Aerodynamic effects of the angle of attack on a rectangular prism. J. Wind Engng Ind. Aerodyn. 77–78 (7–8), 531542.Google Scholar
Menter, F. R. 1994 Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (8), 598605.Google Scholar
Menter, F. R., Kuntz, M. & Langtry, R. 2003 Ten years of industrial experience with the SST turbulence model. Turbul. Heat Mass Transfer 4, 625632.Google Scholar
Noack, R. 2005a DiRTlib: a library to add an overset capability to your flow solver. In 17th Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics.Google Scholar
Noack, R. 2005b SUGGAR: a general capability for moving body overset grid assembly. In 17th Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics.Google Scholar
Norberg, C. 1993 Flow around rectangular cylinders: pressure forces and wake frequencies. J. Wind Engng Ind. Aerodyn. 49 (1–3), 187196.CrossRefGoogle Scholar
Prosser, D. T.2015 Advanced computational techniques for unsteady aerodynamic-dynamic interactions of bluff bodies. PhD thesis, Georgia Institute of Technology, Atlanta, Georgia.Google Scholar
Prosser, D. T. & Smith, M. J. 2014 Three-dimensional bluff body aerodynamics and its importance for helicopter sling loads. In Proceedings of the 40th European Rotorcraft Forum, Southampton, UK. Curran Associates Inc.Google Scholar
Prosser, D. T. & Smith, M. J. 2015a A physics-based reduced-order aerodynamics model for bluff bodies in unsteady, arbitrary motion. J. Am. Helicopter Soc. 60 (3), 115.Google Scholar
Prosser, D. T. & Smith, M. J. 2015b Aerodynamics of finite cylinders in quasi-steady flow. In 53rd AIAA Aerospace Sciences Meeting and Exhibit, Kissimmee, Florida.Google Scholar
Raz, R., Rosen, A., Carmeli, A., Lusardi, J., Cicolani, L. S. & Robinson, L. D. 2010 Wind tunnel and flight evaluation of passive stabilization of a cargo container slung load. J. Am. Helicopter Soc. 55 (3), 118.Google Scholar
Raz, R., Rosen, A., Cicolani, L. S. & Lusardi, J. 2014 Using wind tunnel tests for slung-load clearance. Part 1: the CONEX cargo container. J Am. Helicopter Soc. 59 (4), 112.Google Scholar
Raz, R., Rosen, A., Cicolani, L. S., Lusardi, J., Gassaway, B. & Thompson, T. 2011 Using wind tunnel tests for slung loads clearance. In Proceedings of the 67th American Helicopter Society Annual Forum, Virginia Beach, Virginia. Curran Associates Inc.Google Scholar
Robertson, J. M., Wedding, J. B., Peterka, J. A. & Cermak, J. E. 1978 Wall pressures of separation–reattachment flow on a square prism in uniform flow. J. Wind Engng Ind. Aerodyn. 2 (4), 345359.Google Scholar
Rosen, A., Cecutta, S. & Yaffe, R.1999 Wind tunnel tests of cube and CONEX models. Tech. Rep. TAE 844. Technion – Institute of Technology, Faculty of Aerospace Engineering.Google Scholar
Sánchez-Rocha, M., Kirtas, M. & Menon, S. 2006 Zonal hybrid RANS-LES method for static and oscillating airfoils and wings. In 4th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV.Google Scholar
Sánchez-Rocha, M. & Menon, S. 2009 The compressible hybrid RANS/LES formulation using an additive operator. J. Comput. Phys. 228 (6), 20372062.Google Scholar
Sánchez-Rocha, M. & Menon, S. 2011 An order-of-magnitude approximation for the hybrid terms in the compressible hybrid RANS/LES governing equations. J. Turbul. 12 (16), 122.Google Scholar
Shenoy, R., Holmes, M., Smith, M. J. & Komerath, N. 2013 Scaling evaluations on the drag of a hub system. J. Am. Helicopter Soc. 58 (3), 113.Google Scholar
Shenoy, R. & Smith, M. J. 2011 Unstructured overset grid adaptation for rotorcraft aerodynamic interactions. In Proceedings of the 67th American Helicopter Society Annual Forum, Virginia Beach, Virginia. Curran Associates Inc.Google Scholar
Shenoy, R., Smith, M. & Park, M. 2014 Unstructured overset mesh adaptation with turbulence modeling for unsteady aerodynamic interactions. AIAA J. Aircraft 51 (1), 161174.Google Scholar
Smith, M., Cook, J., Sánchez-Rocha, M., Shenoy, R. & Menon, S. 2013 Improved prediction of complex rotorcraft aerodynamics. In Proceedings of the 69th American Helicopter Society Annual Forum, Phoenix, Arizona.Google Scholar
Smith, M. J., Liggett, N. D. & Koukol, B. C. G. 2011 Aerodynamics of airfoils at high and reverse angles of attack. AIAA J. Aircraft 48 (6), 20122023.Google Scholar
Theron, J. N., Duque, E. P. N., Cicolani, L. & Halsey, R. 2005 Three-dimensional computational fluid dynamics investigation of a spinning helicopter slung load. In 31st European Rotorcraft Forum, Florence, Italy.Google Scholar
Theron, J. N., Gordon, R., Rosen, A., Cicolani, L., Duque, E. P. N. & Halsey, R. H. 2006 Simulation of helicopter slung load aerodynamics: wind tunnel validation of two computational fluid dynamics codes. In AIAA 36th Fluid Dynamics Conference and Exhibit, San Francisco, CA, pp. 114.Google Scholar
Vinuesa, R., Schlatter, P., Malm, J., Mavriplis, C. & Henningson, D. S. 2015 Direct numerical simulation of the flow around a wall-mounted square cylinder under various inflow conditions. J. Turbul. 16, 555587.Google Scholar
Wieselsberger, C. 1922 Further data on the law of liquid and air drag. Physik. Z. 23, 219224 (in German); reprinted in Zdravkovich (2003a).Google Scholar
Zdravkovich, M. M. 2003a Flow Around Circular Cylinders. Vol. 2: Applications. Oxford University Press.Google Scholar
Zdravkovich, M. M. 2003b Flow Around Circular Cylinders. Vol. 1: Fundamentals. Oxford University Press.Google Scholar
Zdravkovich, M. M., Brand, V. P., Mathew, G. & Weston, A. 1989 Flow past short cylinders with two free ends. J. Fluid Mech. 203, 557575.Google Scholar