Skip to main content Accessibility help

A novel non-reflecting boundary condition for fluid dynamics solved by smoothed particle hydrodynamics

  • Pingping Wang (a1), A-Man Zhang (a1), Furen Ming (a1), Pengnan Sun (a2) and Han Cheng (a1)...


Non-reflecting boundary conditions (NRBCs) play an important role in computational fluid dynamics (CFD). A novel NRBC based on the method of characteristics using timeline interpolations is proposed for fluid dynamics solved by smoothed particle hydrodynamics (SPH). It is performed by four layers of particles whose pressures and velocities are obtained through the Lagrange interpolation in the time domain which is derived from the propagation of characteristic waves between particles. The proposed NRBC can allow outward travelling pressure and velocity messages to pass through the boundary without obvious reflection. That is, with the implementation of the NRBC, the solution in a finite computational domain of interest is close to that in an infinite domain. Several numerical tests show that this NRBC is robust and applicable for a broad variety of hydrodynamics ranging from low to high speed.


Corresponding author

Email address for correspondence:


Hide All
Adami, S., Hu, X. Y. & Adams, N. A. 2010 A conservative SPH method for surfactant dynamics. J. Comput. Phys. 229 (5), 19091926.
Adami, S., Hu, X. Y. & Adams, N. A. 2012 A generalized wall boundary condition for smoothed particle hydrodynamics. J. Comput. Phys. 231 (21), 70577075.
Alpert, B., Greengard, L. & Hagstrom, T. 2000 Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Numer. Anal. 37 (4), 11381164.
Altomare, C., Domínguez, J. M., Crespo, A. J. C., González-Cao, J., Suzuki, T., Gómez-Gesteira, M. & Troch, P. 2017 Long-crested wave generation and absorption for SPH-based dualsphysics model. Coast. Engng 127, 3754.
Alvarado-Rodríguez, C. E., Klapp, J., Sigalotti, L. D. G., Domínguez, J. M. & Sánchez, E. D. L. C. 2017 Nonreflecting outlet boundary conditions for incompressible flows using SPH. Comput. Fluids 159, 177188.
Antuono, M., Colagrossi, A., Marrone, S. & Molteni, D. 2010 Free surface flows solved by means of SPH schemes with numerical diffusive terms. Comput. Phys. Commun. 181 (3), 532549.
Bai, K. J. 1977 The added mass of two-dimensional cylinders heaving in water of finite depth. J. Fluid Mech. 81 (1), 85105.
Baum, M., Poinsot, T. & Venin, D. 1995 Accurate boundary conditions for multicomponent reactive flows. J. Comput. Phys. 116 (2), 247261.
Bayliss, A. & Turkel, E. 1980 Radiation boundary condition for wave-like equations. Commun. Pure Appl. Maths 33 (6), 707725.
Benz, W. 1990 Smooth Particle Hydrodynamics: A Review. Springer.
Berenger, J. P. 1994 A perfectly matched layer for the absorption of electromagnetic waves. Phys. Plasmas 114 (2), 185200.
Bermúdez, A., Hervella-Nieto, L., Prieto, A. & Rodríguez, R. 2010 Perfectly matched layers for time-harmonic second order elliptic problems. Arch. Comput. Meth. Engng 17 (1), 77107.
Cao, X. Y., Ming, F. R. & Zhang, A. M. 2014 Sloshing in a rectangular tank based on SPH simulation. Appl. Ocean Res. 47 (2), 241254.
Cheng, H., Zhang, A. M. & Ming, F. R. 2017 Study on coupled dynamics of ship and flooding water based on experimental and SPH methods. Phys. Fluids 29 (10), 107101.
Colagrossi, A., Bouscasse, B., Antuono, M. & Marrone, S. 2012 Particle packing algorithm for SPH schemes. Comput. Phys. Commun. 183 (8), 16411653.
Cui, P., Zhang, A. M. & Wang, S. P. 2016 Small-charge underwater explosion bubble experiments under various boundary conditions. Phys. Fluids 28 (11), 117103.
Dobratz, B.1981 LLNL explosive handbook: properties of chemical explosives and explosives simulants. Report UCRL-52997. Lawrence Livermore National Laboratory, Livermore, CA, USA.
Engquist, B. & Majda, A. 1977 Absorbing boundary conditions for the numerical simulation of waves. Proc. Natl Acad. Sci. USA 74 (5), 1765.
Ferrari, A., Fraccarollo, L., Dumbser, M., Toro, E. F. & Armanini, A. 2010 Three-dimensional flow evolution after a dam break. J. Fluid Mech. 663, 456477.
Gingold, R. A & Monaghan, J. J. 1977 Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181 (3), 375389.
Givoli, D. 1992 Numerical Methods For Problems in Infinite Domains. Elsevier.
Givoli, D. 1999 Recent advances in the DtN FE method. Arch. Comput. Meth. Engng 6 (2), 71116.
Gong, K., Liu, H. & Wang, B. L. 2009 Water entry of a wedge based on SPH model with an improved boundary treatment. J. Hydrodyn. 21 (6), 750757.
Grenier, N., Antuono, M., Colagrossi, A., Le, T. & Alessandrini, B. 2009 An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. J. Comput. Phys. 228 (22), 83808393.
Grinstein, F. F. 1994 Open boundary conditions in the simulation of subsonic turbulent shear flows. J. Comput. Phys. 115 (1), 4355.
Hagstrom, T. 1999 Radiation boundary conditions for the numerical simulation of waves. Acta Numerica 8, 47106.
Hirschler, M., Kunz, P., Huber, M., Hahn, F. & Nieken, U. 2016 Open boundary conditions for ISPH and their application to micro-flow. J. Comput. Phys. 307, 614633.
Hou, Q., Kruisbrink, A. C. H., Pearce, F. R., Tijsseling, A. S. & Yue, T. 2014 Smoothed particle hydrodynamics simulations of flow separation at bends. Comput. Fluids 90 (4), 138146.
Huang, C., Zhang, D. H., Shi, Y. X., Si, Y. L. & Huang, B. 2018 Coupled finite particle method with a modified particle shifting technology. Intl J. Numer. Meth. Engng 113 (2), 179207.
Kim, J. H. & Shin, H. C. 2008 Application of the ALE technique for underwater explosion analysis of a submarine liquefied oxygen tank. Ocean Engng 35 (8C9), 812822.
Klaseboer, E., Hung, K. C., Wang, C., Wang, C. W., Khoo, B. C., Boyce, P., Debono, S. & Charlier, H. 2005 Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure. J. Fluid Mech. 537, 387413.
Kreiss, H. O. 1970 Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Maths 23 (3), 277298.
Landrini, M., Colagrossi, A., Greco, M. & Tulin, M. P. 2007 Gridless simulations of splashing processes and near-shore bore propagation. J. Fluid Mech. 591, 183213.
Lastiwka, M., Basa, M. & Quinlan, N. J. 2010 Permeable and non-reflecting boundary conditions in SPH. Intl J. Numer. Meth. Fluids 61 (7), 709724.
Lind, S. J., Xu, R., Stansby, P. K. & Rogers, B. D. 2012 Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J. Comput. Phys. 231 (4), 14991523.
Liu, G. R. & Liu, M. B. 2003 Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific.
Liu, M. B. & Liu, G. R. 2006 Restoring particle consistency in smoothed particle hydrodynamics. Appl. Numer. Maths 56 (1), 1936.
Liu, M. B., Liu, G. R., Lam, K. Y. & Zong, Z. 2003 Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Comput. Mech. 30 (2), 106118.
Liu, W. T., Ming, F. R., Zhang, A. M., Miao, X. H. & Liu, Y. L. 2018 Continuous simulation of the whole process of underwater explosion based on eulerian finite element approach. Appl. Ocean Res. 80, 125135.
Lubich, C. 2002 Fast Convolution for Nonreflecting Boundary Conditions. Society for Industrial and Applied Mathematics.
Lucy, L. B. 1977 A numerical approach to the testing of the fission hypothesis. Astron. J. 82 (82), 10131024.
Marrone, S.2012 Enhanced SPH modeling of free-surface flows with large deformations. PhD thesis, University of Rome.
Marrone, S., Antuono, M., Colagrossi, A., Colicchio, G., Touzé, D. L. & Graziani, G. 2011 𝛿-SPH model for simulating violent impact flows. Comput. Meth. Appl. Mech. Engng 200 (13C16), 15261542.
Marrone, S., Colagrossi, A., Antuono, M., Colicchio, G. & Graziani, G. 2013 An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers. J. Comput. Phys. 245 (1), 456475.
Ming, F. R., Sun, P. N. & Zhang, A. M. 2017 Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model. Meccanica 52, 26652684.
Ming, F. R., Zhang, A. M., Cheng, H. & Sun, P. N. 2018 Numerical simulation of a damaged ship cabin flooding in transversal waves with smoothed particle hydrodynamics method. Ocean Engng 165, 336352.
Ming, F. R., Zhang, A. M., Xue, Y. Z. & Wang, S. P. 2016 Damage characteristics of ship structures subjected to shockwaves of underwater contact explosions. Ocean Engng 117, 359382.
Molteni, D. & Colagrossi, A. 2009 A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput. Phys. Commun. 180 (6), 861872.
Monaghan, J. J. 1988 An introduction to SPH. Comput. Phys. Commun. 48 (1), 8996.
Monaghan, J. J. 1989 On the problem of penetration in particle methods. J. Comput. Phys. 82 (1), 115.
Monaghan, J. J. 1994 Simulating free surface flows with SPH. J. Comput. Phys. 110 (2), 399406.
Monaghan, J. J. & Gingold, R. A. 1983 Shock simulation by the particle method SPH. J. Comput. Phys. 52 (2), 374389.
Morris, J. P. 2000 Simulating surface tension with smoothed particle hydrodynamics. Intl J. Numer. Meth. Fluids 33 (3), 333353.
Morris, J. P., Fox, P. J. & Zhu, Y. 1997 Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136 (1), 214226.
Okong’O, N. & Bellan, J. 2002 Consistent Boundary Conditions for Multicomponent Real Gas Mixtures Based on Characteristic Waves. Academic Press.
Poinsot, T. J. & Lelef, S. K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1), 104129.
Randles, P. W. & Libersky, L. D. 1996 Smoothed particle hydrodynamics: some recent improvements and applications. Comput. Meth. Appl. Mech. Engng 139 (1C4), 375408.
Steinberg, D. J. 1987 Spherical Explosions and the Equation of State of Water. Military Technology Weaponry and National Defense.
Sun, P. N., Ming, F. R. & Zhang, A. M. 2015 Numerical simulation of interactions between free surface and rigid body using a robust SPH method. Ocean Engng 98, 3249.
Tafuni, A., Domínguez, J. M., Vacondio, R. & Crespo, A. J. C. 2017 Accurate and efficient SPH open boundary conditions for real 3-D engineering problems. Proc. SPHERIC, 12th Intl Workshop, Munich, Germany, June, pp. 346–354.
Tafuni, A., Domínguez, J. M., Vacondio, R. & Crespo, A. J. C. 2018 A versatile algorithm for the treatment of open boundary conditions in smoothed particle hydrodynamics GPU models. Comput. Meth. Appl. Mech. Engng 342, 604624.
Tafuni, A., Domínguez, J. M., Vacondio, R., Sahin, I. & Crespo, A. J. C. 2016 Open boundary conditions for large-scale SPH simulations. Proc. SPHERIC, 11th Intl Workshop, Ourense, Spain, June, pp. 204–210.
Tartakovsky, A. M., Meakin, P., Scheibe, T. D. & West, R. M. E. 2007 Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J. Comput. Phys. 222 (2), 654672.
Thompson, K. W. 1990 Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 89 (2), 439461.
Ulrich, C., Leonardi, M. & Rung, T. 2013 Multi-physics SPH simulation of complex marine-engineering hydrodynamic problems. Ocean Engng 64 (6), 109121.
Wang, G. H., Zhang, S. R., Yu, M., Li, H. B. & Kong, Y. 2014 Investigation of the shock wave propagation characteristics and cavitation effects of underwater explosion near boundaries. Appl. Ocean Res. 46 (2), 4053.
Xie, W. F., Liu, T. G. & Khoo, B. C. 2006 Application of a one-fluid model for large scale homogeneous unsteady cavitation: the modified Schmidt model. Comput. Fluids 35 (10), 11771192.
Zamyshlyaev, B. V. & Yakovlev, Y. S. 1973 Dynamic Loads in Underwater Explosion. Naval Intelligence Support Center.
Zhang, A. M., Wu, W. B., Liu, Y. L. & Wang, Q. X. 2017 Nonlinear interaction between underwater explosion bubble and structure based on fully coupled model. Phys. Fluids 29 (8), 082111.
Zhang, A. M., Yang, W. S. & Yao, X. L. 2012 Numerical simulation of underwater contact explosion. Appl. Ocean Res. 34 (1), 1020.
Zhao, R. & Faltinsen, O. 1993 Water entry of two-dimensional bodies. J. Fluid Mech. 246, 593612.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

A novel non-reflecting boundary condition for fluid dynamics solved by smoothed particle hydrodynamics

  • Pingping Wang (a1), A-Man Zhang (a1), Furen Ming (a1), Pengnan Sun (a2) and Han Cheng (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed