Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-03T16:48:04.817Z Has data issue: false hasContentIssue false

Nonlinear surface Ekman effects on cyclonic and anticyclonic vortices

Published online by Cambridge University Press:  21 September 2023

L. Zavala Sansón*
Affiliation:
Department of Physical Oceanography, CICESE, Ensenada, Baja California 22860, Mexico
I.M. García-Martínez
Affiliation:
Department of Physical Oceanography, CICESE, Ensenada, Baja California 22860, Mexico
J. Sheinbaum
Affiliation:
Department of Physical Oceanography, CICESE, Ensenada, Baja California 22860, Mexico
*
Email address for correspondence: lzavala@cicese.mx

Abstract

The transfer of momentum between the atmosphere and oceanic motions affected by the Earth's rotation occurs through the thin surface Ekman layer. The exchange depends on the surface wind stress, which produces the Ekman pumping of fluid to the ocean upper layer. The Ekman pumping mainly depends on: (i) the curl of the wind stress and (ii) the advection of vorticity due to the Ekman transport. The wind stress is usually parametrised as a quadratic function of the relative speed between the wind and the ocean currents, providing a feedback mechanism between the two fluids. Under steady and spatially uniform wind conditions over mesoscale vortices, the first mechanism generates vertical motions that induce the vortex decay (top drag), while the second promotes the horizontal advection of vorticity in the Ekman transport direction. This study examines the nonlinear effects of both mechanisms in cyclonic and anticyclonic vortices. The analyses consist of simple analytical approximations and nonlinear numerical simulations of quasi-two-dimensional vortices. When considering only the top drag mechanism, it is found that anticyclones decay faster than cyclones. By considering only the vorticity-advection effect, the vortices acquire horizontal momentum and drift; furthermore, anticyclones are reinforced while cyclones are weakened. The joint action of both mechanisms and the possible consequences on vertical transport properties are also discussed.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adem, J. 1956 A series solution for the barotropic vorticity equation and its application in the study of atmospheric vortices. Tellus 8 (3), 364372.CrossRefGoogle Scholar
Amador, J.A. 2008 The intra-Americas sea low-level jet: overview and future research. Ann. N.Y. Acad. Sci. 1146 (1), 153188.CrossRefGoogle ScholarPubMed
Carton, X.J & McWilliams, J.C. 1989 Barotropic and baroclinic instabilities of axisymmetric vortices in a quasigeostrophic model. Elsevier Oceanogr. Series, vol. 50, pp. 225–244. Elsevier.CrossRefGoogle Scholar
Chelton, D.B., Schlax, M.G. & Samelson, R.M. 2011 Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91 (2), 167216.CrossRefGoogle Scholar
Chen, K., Gaube, P. & Pallàs-Sanz, E. 2020 On the vertical velocity and nutrient delivery in warm core rings. J. Phys. Oceanogr. 50 (6), 15571582.CrossRefGoogle Scholar
Damien, P., Sheinbaum, J., Pasqueron de Fommervault, O., Jouanno, J., Linacre, L. & Duteil, O. 2021 Do Loop Current eddies stimulate productivity in the Gulf of Mexico? Biogeosciences 18 (14), 42814303.CrossRefGoogle Scholar
Dewar, W.K. & Flierl, G.R. 1987 Some effects of the wind on rings. J. Phys Oceanogr. 17 (10), 16531667.2.0.CO;2>CrossRefGoogle Scholar
Ding, M., Lin, P., Liu, H., Hu, A. & Liu, C. 2020 Lagrangian eddy kinetic energy of ocean mesoscale eddies and its application to the Northwestern Pacific. Sci. Rep. 10, 12791.CrossRefGoogle ScholarPubMed
Estrada-Allis, S.N., Barceló-Llull, B., Pallàs-Sanz, E., Rodríguez-Santana, A., Souza, J.M.A.C., Mason, E., McWilliams, J.C. & Sangrà, P. 2019 Vertical velocity dynamics and mixing in an anticyclone near the Canary Islands. J. Phys. Oceanogr. 49 (2), 431451.CrossRefGoogle Scholar
Flór, J.-B. & Eames, I. 2002 Dynamics of monopolar vortices on a topographic beta-plane. J. Fluid Mech. 456, 353376.CrossRefGoogle Scholar
García-Martínez, I.M. & Bollasina, M.A. 2020 Sub-monthly evolution of the Caribbean Low-Level Jet and its relationship with regional precipitation and atmospheric circulation. Clim. Dyn. 54 (9), 44234440.CrossRefGoogle Scholar
García-Nava, H., Ocampo-Torres, F.J. & Hwang, P.A. 2012 On the parameterization of the drag coefficient in mixed seas. Scientia Marina 76 (S1), 177186.Google Scholar
Gaube, P., Chelton, D.B., Samelson, R.M., Schlax, M.G. & O'Neill, L.W. 2015 Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr. 45 (1), 104132.CrossRefGoogle Scholar
van Heijst, G.J.F. & Clercx, H.J.H. 2009 Laboratory modeling of geophysical vortices. Annu. Rev. Fluid Mech. 41, 143164.CrossRefGoogle Scholar
Hellerman, S. 1967 An updated estimate of the wind stress on the world ocean. Mon. Weath. Rev. 95 (9), 607626.2.3.CO;2>CrossRefGoogle Scholar
Jouanno, J., Sheinbaum, J., Barnier, B., Molines, J.M. & Candela, J. 2012 Seasonal and interannual modulation of the eddy kinetic energy in the Caribbean Sea. J. Phys. Oceanogr. 42 (11), 20412055.CrossRefGoogle Scholar
Klein, P., Lapeyre, G., Siegelman, L., Qiu, B., Fu, L.L., Torres, H., Su, Z., Menemenlis, D. & Le Gentil, S. 2019 Ocean-scale interactions from space. Earth Space Sci. 6 (5), 795817.CrossRefGoogle Scholar
Kloosterziel, R.C. & van Heijst, G.J.F. 1991 An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 124.CrossRefGoogle Scholar
Kloosterziel, R.C. & van Heijst, G.J.F. 1992 The evolution of stable barotropic vortices in a rotating free-surface fluid. J. Fluid Mech. 239, 607629.CrossRefGoogle Scholar
Mahadevan, A., Thomas, L.N. & Tandon, A. 2008 Comment on “Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms”. Science 320 (5875), 448448.CrossRefGoogle Scholar
Mahdinia, M., Hassanzadeh, P., Marcus, P.S. & Jiang, C.H. 2017 Stability of three-dimensional Gaussian vortices in an unbounded, rotating, vertically stratified, Boussinesq flow: linear analysis. J. Fluid Mech. 824, 97134.CrossRefGoogle Scholar
McGillicuddy, D.J., Ledwell, J.R. & Anderson, L.A. 2008 Response to comment on “Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms”. Science (5875), 448.Google Scholar
McGillicuddy, D.J. Jr., et al. 2007 Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316 (5827), 10211026.CrossRefGoogle ScholarPubMed
McGillicuddy, D.J. Jr. 2016 Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annu. Rev. Mar. Sci. 8, 125159.CrossRefGoogle ScholarPubMed
McWilliams, J.C. & Flierl, G.R. 1979 On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr. 9 (6), 11551182.2.0.CO;2>CrossRefGoogle Scholar
Meunier, T., Sheinbaum, J., Pallàs-Sanz, E., Tenreiro, M., Ochoa, J., Ruiz-Angulo, A., Carton, X. & de Marez, C. 2020 Heat content anomaly and decay of warm-core rings: the case of the Gulf of Mexico. Geophys. Res. Lett. 47 (3), e2019GL085600.CrossRefGoogle Scholar
Mkhinini, N., Coimbra, A.L.S., Stegner, A., Arsouze, T., Taupier-Letage, I. & Béranger, K. 2014 Long-lived mesoscale eddies in the eastern Mediterranean Sea: analysis of 20 years of AVISO geostrophic velocities. J. Geophys. Res. 119 (12), 86038626.CrossRefGoogle Scholar
Orlandi, P. & Carnevale, G.F. 1999 Evolution of isolated vortices in a rotating fluid of finite depth. J. Fluid Mech. 381, 239269.CrossRefGoogle Scholar
Pacanowski, R.C. 1987 Effect of equatorial currents on surface stress. J. Phys. Oceanogr. 17 (6), 833838.2.0.CO;2>CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.CrossRefGoogle Scholar
Rai, S., Hecht, M., Maltrud, M. & Aluie, H. 2021 Scale of oceanic eddy killing by wind from global satellite observations. Sci. Adv. 7 (28), eabf4920.CrossRefGoogle ScholarPubMed
Renault, L., Molemaker, M.J., McWilliams, J.C., Shchepetkin, A.F., Lemarié, F., Chelton, D., Illig, S. & Hall, A. 2016 Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr. 46 (6), 16851704.CrossRefGoogle Scholar
Romero Centeno, R. & Zavala Hidalgo, J. 2021 Meteorología. Atlas de línea base ambiental del Golfo de México (Tomo I), México: Consorcio de Investigación del Golfo de México.Google Scholar
Stegner, A. & Dritschel, D.G. 2000 A numerical investigation of the stability of isolated shallow water vortices. J. Phys. Oceanogr. 30 (10), 25622573.2.0.CO;2>CrossRefGoogle Scholar
Stern, M.E. 1965 Interaction of a uniform wind stress with a geostrophic vortex. Deep Sea Res. Oceanogr. Abstr. 12, 355367.CrossRefGoogle Scholar
Tenreiro, M., Candela, J., Pallàs Sanz, E., Sheinbaum, J. & Ochoa, J. 2018 Near-surface and deep circulation coupling in the western Gulf of Mexico. J. Phys. Oceanogr. 48 (1), 145161.CrossRefGoogle Scholar
Vallis, G.K. 2017 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Wenegrat, J.O. & Thomas, L.N. 2017 Ekman transport in balanced currents with curvature. J. Phys. Oceanogr. 47 (5), 11891203.CrossRefGoogle Scholar
Wilder, T., Zhai, X., Munday, D. & Joshi, M. 2022 The response of a baroclinic anticyclonic eddy to relative wind stress forcing. J. Phys. Oceanogr. 52 (9), 21292142.CrossRefGoogle Scholar
Xu, C., Zhai, X. & Shang, X. 2016 Work done by atmospheric winds on mesoscale ocean eddies. Geophys. Res. Lett. 43 (23), 12174.CrossRefGoogle Scholar
Zavala Sansón, L. 2001 The asymmetric Ekman decay of cyclonic and anticyclonic vortices. Eur. J. Mech. B/Fluids 20 (4), 541556.CrossRefGoogle Scholar
Zavala Sansón, L. 2022 Effects of mesoscale turbulence on the wind-driven circulation in a closed basin with topography. Geophys. Astrophys. Fluid Dyn. 116 (3), 159184.CrossRefGoogle Scholar
Zavala Sansón, L. & van Heijst, G.J.F. 2000 Nonlinear Ekman effects in rotating barotropic flows. J. Fluid Mech. 412, 7591.CrossRefGoogle Scholar
Zavala Sansón, L. & van Heijst, G.J.F. 2002 Ekman effects in a rotating flow over bottom topography. J. Fluid Mech. 471, 239255.CrossRefGoogle Scholar
Zavala Sansón, L. & van Heijst, G.J.F. 2014 Laboratory experiments on flows over bottom topography. In Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations (ed. T. von Larcher & P.D. Williams). Wiley.CrossRefGoogle Scholar
Zavala Sansón, L., van Heijst, G.J.F. & Backx, N.A. 2001 Ekman decay of a dipolar vortex in a rotating fluid. Phys. Fluids 13 (2), 440451.CrossRefGoogle Scholar
Zavala Sansón, L., van Heijst, G.J.F. & Doorschot, J.J.J. 1999 Reflection of barotropic vortices from a step-like topography. Nuovo Cimento C 22 (6), 909930.Google Scholar
Zhang, Z., Qiu, B., Tian, J., Zhao, W. & Huang, X. 2018 Latitude-dependent finescale turbulent shear generations in the Pacific tropical-extratropical upper ocean. Nat. Commun. 9, 4086.Google ScholarPubMed