Skip to main content Accessibility help

Nonlinear evolution equations for two-dimensional surface waves in a fluid of finite depth

  • Wooyoung Choi (a1)


Two-dimensional weakly nonlinear surface gravity–capillary waves in an ideal fluid of finite water depth are considered and nonlinear evolution equations which are correct up to the third order of wave steepness are derived including the applied pressure on the free surface. Since no assumptions are made on the length scales, the equations can be applied to a fluid of arbitrary depth and to disturbances with arbitrary wavelength. For one-dimensional gravity waves, these evolution equations are reduced to those derived by Matsuno (1992). Most of the known equations for surface waves are recovered from the new set of equations as special cases. It is shown that one set of equations has a Hamiltonian formulation and conserves mass, momentum and energy. The analysis for irrotational flow is extended to two-dimensional uniform shear flow.



Hide All
Cheng, H. K. & Johnson, E. R. 1982 Inertial waves above an obstacle in an unbounded rapidly rotating fluid. Proc. R. Soc. Lond. A 383, 71.
Craik, A. D. D. 1971 Nonlinear resonant instability in boundary layers. J. Fluid Mech. 50, 393.
Dodia, B. T., Bowles, R. G. A. & Smith, F. T. 1995 On effects of increasing amplitudes in a boundary-layer spot. J. Engng Maths (submitted).
Doorly, D. J. & Smith, F. T. 1992 Initial-value problems for spot disturbances in incompressible or compressible boundary layers. J. Engng Maths 26, 87.
Elder, J. W. 1960 An experimental investigation of turbulent spots and breakdown to turbulence. J. Fluid Mech. 9, 235.
Emmons, H. W. 1951 The laminar-turbulent transition in a boundary layer, Part 1. J. Aero. Sci. 18, 490.
Gad-El-Hak, M., Blackwelder, R. F. & Riley, J. J. 1981 On the growth of turbulent regions in laminar boundary layers. J. Fluid Mech. 110, 73.
Gaster, M. 1968 The development of three-dimensional wave-packets in a boundary layer. J. Fluid Mech. 32, 173.
Gaster, M. 1975 A theoretical model of a wave-packet in the boundary layer on a flat plate. Proc. R. Soc. Lond. A 347, 271.
Gaster, M. & Grant, I. 1975 An experimental investigation of the formation and development of a wave-packet in a laminar boundary layer. Proc. R. Soc. Lond. A 347, 253.
Glezer, A., Katz, Y. & Wygnanski, I. 1989 On the breakdown of the wave-packet trailing a turbulent spot in a laminar boundary layer. J. Fluid Mech. 198, 1.
Goldstein, M. E. & Hultgren, L. S. 1988 Nonlinear spatial evolution of an externally excited instability wave in a free shear layer. J. Fluid Mech. 197, 295.
Henningson, D., Lundbladh, A. & Johansson, A. V. 1993 A mechanism for by-pass transition from localized disturbances in wall-bounded shear flows. J. Fluid Mech. 250, 169.
Kachanov, Y. S., Ryzhov, O. S. & Smith, F. T. 1993 Formation of solitons in transitional boundary layers: theory and experiment. J. Fluid Mech. 251, 273.
Katz, Y., Seifert, A. & Wygnanski, I. 1990 On the evolution of the turbulent spot in a laminar boundary layer with a favourable pressure gradient. J. Fluid Mech. 221, 1.
Lighthill, M. J. 1978 Ship waves. In Waves In Fluids (ch. 3.10). Cambridge University Press.
Mautner, T. S. & Van Atta, C. W. 1982 An experimental study of the wall-pressure field associated with a turbulent spot in a boundary layer. J. Fluid Mech. 118, 59.
Ryzhov, O. S. & Savenkov, V. I. 1987 Asymptotic theory of a wave packet in a boundary layer on a plate. Prikl. Matem. Mekhan. 50, 820.
Smith, F. T. 1986 Steady and unsteady 3D interactive boundary layers. Computers Fluids 20, 293.
Smith, F. T. 1992 On nonlinear effects near the wingtips of an evolving boundary-layer spot. Phil. Trans. R. Soc. Lond. A 340, 131.
Smith, F. T., Brown, S. N. & Brown, P. G. 1993 Initiation of three-dimensional nonlinear transition paths from an inflectional profile. Eur. J. Mech. 12, 447.
Smith, F. T. & Burggraf, O. R. 1985 On the development of large-sized short-scaled disturbances in boundary layers. Proc. R. Soc. Lond. A 399, 25.
Smith, F. T., Dodia, B. T. & Bowles, R. G. A. 1994 On global and internal dynamics of spots: a theoretical approach. J. Engng Maths 28, 73.
Smith, F. T., Doorly, D. J. & Rothmayer, A. P. 1990 On displacement thickness, wall-layer and mid-flow scales in turbulent boundary layers and slugs of vorticity in pipes and channels. Proc. R. Soc. Lond. A 428, 255.
Widnall, S. E. 1984 Growth of turbulent spot in plane Poiseuille flow. In Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi), p. 93. Elsevier.
MathJax is a JavaScript display engine for mathematics. For more information see

Related content

Powered by UNSILO

Nonlinear evolution equations for two-dimensional surface waves in a fluid of finite depth

  • Wooyoung Choi (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.