Skip to main content Accessibility help

Non-isothermal bubble rise dynamics in a self-rewetting fluid: three-dimensional effects

  • Mounika Balla (a1), Manoj Kumar Tripathi (a2), Kirti Chandra Sahu (a1), George Karapetsas (a3) and Omar K. Matar (a4)...


The dynamics of a gas bubble in a square channel with a linearly increasing temperature at the walls in the vertical direction is investigated via three-dimensional numerical simulations. The channel contains a so-called ‘self-rewetting’ fluid whose surface tension exhibits a parabolic dependence on temperature with a well-defined minimum. The main objectives of the present study are to investigate the effect of Marangoni stresses on bubble rise in a self-rewetting fluid using a consistent model fully accounting for the tangential surface tension forces, and to highlight the effects of three-dimensionality on the bubble rise dynamics. In the case of isothermal and non-isothermal systems filled with a ‘linear’ fluid, the bubble moves in the upward direction in an almost vertical path. In contrast, strikingly different behaviours are observed when the channel is filled with a self-rewetting fluid. In this case, as the bubble crosses the location of minimum surface tension, the buoyancy-induced upward motion of the bubble is retarded by a thermocapillary-driven flow acting in the opposite direction, which in some situations, when thermocapillarity outweighs buoyancy, results in the migration of the bubble in the downward direction. In the later stages of this downward motion, as the bubble reaches the position of arrest, its vertical motion decelerates and the bubble encounters regions of horizontal temperature gradients, which ultimately lead to the bubble migration towards one of the channel walls. These phenomena are observed at sufficiently small Bond numbers (high surface tension). For stronger self-rewetting behaviour, the bubble undergoes spiralling motion. The mechanisms underlying these three-dimensional effects are elucidated by considering how the surface tension dependence on temperature affects the thermocapillary stresses in the flow. The effects of other dimensionless numbers, such as Reynolds and Froude numbers, are also investigated.


Corresponding author

Email address for correspondence:


Hide All
Abe, Y., Iwasaki, A. & Tanaka, K. 2004 Microgravity experiments on phase change of self-rewetting fluids. Ann. N.Y. Acad. Sci. 1027, 269285.
Ahmed, S. & Carey, V. P. 1999 Effects of surface orientation on the pool boiling heat transfer in water/2-propanol mixtures. Trans. ASME J. Heat Transfer 121, 8088.
Balasubramaniam, R. 1998 Thermocapillary and buoyant bubble motion with variable viscosity. Intl J. Multiphase Flow 24 (4), 679683.
Balasubramaniam, R. & Chai, A.-T. 1987 Thermocapillary migration of droplets: an exact solution for small Marangoni numbers. J. Colloid Interface Sci. 119 (2), 531538.
Borcia, R. & Bestehorn, M. 2007 Phase-field simulations for drops and bubbles. Phys. Rev. E 75 (5), 056309.
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100, 335354.
Brady, P. T., Herrmann, M. & Lopez, J. M. 2011 Confined thermocapillary motion of a three-dimensional deformable drop. Phys. Fluids 23 (2), 022101.
Cano-Lozano, J. C., Tchoufag, J., Magnaudet, J. & Martínez-Bazán, C. 2016 A global stability approach to wake and path instabilities of nearly oblate spheroidal rising bubbles. Phys. Fluids 28 (1), 014102.
Chen, J., Dagan, Z. & Maldarelli, C. 1991 The axisymmetric thermocapillary motion of a fluid particle in a tube. J. Fluid Mech. 233, 405437.
Chen, J. C. & Lee, Y. T. 1992 Effect of surface deformation on thermocapillary bubble migration. AIAA J. 30 (4), 993998.
Haj-Hariri, H., Shi, Q. & Borhan, A. 1997 Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers. Phys. Fluids 9 (4), 845855.
Herrmann, M., Lopez, J. M., Brady, P. & Raessi, M. 2008a Thermocapillary motion of deformable drops and bubbles. In Proceedings of the Summer Program 2008, p. 155. Stanford University: Center for Turbulence Research.
Herrmann, M., Lopez, J. M., Brady, P. & Raessi, M. 2008b Thermocapillary motion of deformable drops and bubbles. In Proceedings of the Summer Program, p. 155. Stanford University: Center for Turbulence Research.
Karapetsas, G., Sahu, K. C., Sefiane, K. & Matar, O. K. 2014 Thermocapillary-driven motion of a sessile drop: effect of non-monotonic dependence of surface tension on temperature. Langmuir 30 (15), 43104321.
Keh, H. J., Chen, P. Y. & Chen, L. S. 2002 Thermocapillary motion of a fluid droplet parallel to two plane walls. Intl J. Multiphase Flow 28 (7), 11491175.
Limbourgfontaine, M. C., Petre, G. & Legros, J. C. 1986 Thermocapillary movements under at a minimum of surface tension. Naturwissenschaften 73, 360362.
Liu, H., Valocchi, A. J., Zhang, Y. & Kang, Q. 2013 Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Phys. Rev. E 87 (1), 013010.
Liu, H., Zhang, Y. & Valocchi, A. J. 2012 Modeling and simulation of thermocapillary flows using lattice Boltzmann method. J. Comput. Phys. 231 (12), 44334453.
Ma, C. & Bothe, D. 2011 Direct numerical simulation of thermocapillary flow based on the volume of fluid method. Intl J. Multiphase Flow 37 (9), 10451058.
Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311337.
Mahesri, S., Haj-Hariri, H. & Borhan, A. 2014 Effect of interface deformability on thermocapillary motion of a drop in a tube. Heat Mass Transfer. 50 (3), 363372.
McGillis, W. R. & Carey, V. P. 1996 On the role of Marangoni effects on the critical heat flux for pool boiling of binary mixtures. Trans. ASME J. Heat Transfer 118, 103109.
Merritt, R. M., Morton, D. S. & Subramanian, R. S. 1993 Flow structures in bubble migration under the combined action of buoyancy and thermocapillarity. J. Colloid Interface Sci. 155 (1), 200209.
Nahme, R. 1940 Beiträge zur hydrodynamischen theorie der lagerreibung. Ing.-Arch. 11, 191209.
Nas, S. & Tryggvason, G. 2003 Thermocapillary interaction of two bubbles or drops. Intl J. Multiphase Flow 29 (7), 11171135.
Petre, G. & Azouni, M. A. 1984 Experimental evidence for the minimum of surface tension with temperature at aqueous alcohol solution air interfaces. J. Colloid Interface Sci. 98, 261263.
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190, 572600.
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 58385866.
Popinet, S. 2018 Numerical models of surface tension. Annu. Rev. Fluid Mech. 50, 4975.
Savino, R., Cecere, A. & Paola, R. D. 2009 Surface tension driven flow in wickless heat pipes with self-rewetting fluids. Intl J. Heat Fluid Flow 30, 380388.
Savino, R., Cecere, A., Vaerenbergh, S. V., Abe, Y., Pizzirusso, G., Tzevelecos, W., Mojahed, M. & Galand, Q. 2013 Some experimental progresses in the study of self-rewetting fluids for the SELENE experiment to be carried in the Thermal Platform 1 hardware. Acta Astron. 89, 179188.
Seric, I., Afkhami, S. & Kondic, L. 2018 Direct numerical simulation of variable surface tension flows using a volume-of-fluid method. J. Comput. Phys. 352 (1), 615636.
Sharaf, D. M., Premlata, A. R., Tripathi, M. K., Karri, B. & Sahu, K. C. 2017 Shapes and paths of an air bubble rising in quiescent liquids. Phys. Fluids 29 (12), 122104.
Subramanian, R. S. 1992 Transport Processes in Drops, Bubbles and Particles. Hemisphere.
Subramanian, R. S., Balasubramaniam, R. & Wozniak, G. 2002 Fluid mechanics of bubbles and drops. In Physics of Fluids in Microgravity (ed. Monti, R.), pp. 149177. Taylor and Francis.
Suzuki, K., Nakano, M. & Itoh, M. 2005 Subcooled boiling of aqueous solution of alcohol. In Proceedings of the 6th KSME-JSME Joint Conference on Thermal and Fluid Engineering Conference, pp. 2123. ASME International.
Tripathi, M. K. & Sahu, K. C. 2018 Motion of an air bubble under the action of thermocapillary and buoyancy forces. Comput. Fluids 177, 5868.
Tripathi, M. K., Sahu, K. C. & Govindarajan, R. 2015a Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. Commun. 6, 6268.
Tripathi, M. K., Sahu, K. C., Karapetsas, G. & Matar, O. K. 2015b Bubble rise dynamics in a viscoplastic material. J. Non-Newtonian Fluid Mech. 222, 217226.
Tripathi, M. K., Sahu, K. C., Karapetsas, G., Sefiane, K. & Matar, O. K. 2015c Non-isothermal bubble rise: non-monotonic dependence of surface tension on temperature. J. Fluid Mech. 763, 82108.
Villers, D. & Platten, J. K. 1988 Temperature dependence of the interfacial tension between water and long-chain alcohols. J. Phys. Chem. A 92 (14), 40234024.
Vochten, R. & Petre, G. 1973 Study of heat of reversible adsorption at air–solution interface 2. Experimental determination of heat of reversible adsorption of some alcohols. J. Colloid Interface Sci. 42, 320327.
Welch, S. W. J. 1998 Transient thermocapillary migration of deformable bubbles. J. Colloid Interface Sci. 208 (2), 500508.
Weymouth, G. D. & Yue, D. K.-P. 2010 Conservative volume-of-fluid method for free-surface simulations on cartesian-grids. J. Comput. Phys. 229, 28532865.
Wu, Z.-B. & Hu, W.-R. 2012 Thermocapillary migration of a planar droplet at moderate and large Marangoni numbers. Acta Mechanica 223 (3), 609626.
Wu, Z.-B. & Hu, W.-R. 2013 Effects of Marangoni numbers on thermocapillary drop migration: constant for quasi-steady state? J. Math. Phys. 54 (2), 023102.
Yang, B. & Prosperetti, A. 2007 Linear stability of the flow past a spheroidal bubble. J. Fluid Mech. 582, 5378.
Young, N. O., Goldstein, J. S. & Block, M. J. 1959 The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350356.
Zenit, R. & Magnaudet, J. 2008 Path instability of rising spheroidal air bubbles: a shape-controlled process. Phys. Fluids 20, 061702.
Zhang, L., Subramanian, R. S. & Balasubramaniam, R. 2001 Motion of a drop in a vertical temperature gradient at small Marangoni number – the critical role of inertia. J. Fluid Mech. 448, 197211.
Zhao, J.-F., Li, Z.-D., Li, H.-X. & Li, J. 2010 Thermocapillary migration of deformable bubbles at moderate to large Marangoni number in microgravity. Microgravity Sci. Technol. 22 (3), 295303.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Non-isothermal bubble rise dynamics in a self-rewetting fluid: three-dimensional effects

  • Mounika Balla (a1), Manoj Kumar Tripathi (a2), Kirti Chandra Sahu (a1), George Karapetsas (a3) and Omar K. Matar (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed