Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-30T04:51:53.419Z Has data issue: false hasContentIssue false

Non-isochoric stable granular models taking into account fluidisation by pore gas pressure

Published online by Cambridge University Press:  10 January 2024

Laurent Chupin*
Affiliation:
Université Clermont Auvergne, CNRS, LMBP, F-63000 Clermont-Ferrand, France
Thierry Dubois
Affiliation:
Université Clermont Auvergne, CNRS, LMBP, F-63000 Clermont-Ferrand, France
*
Email address for correspondence: Laurent.Chupin@uca.fr

Abstract

In this paper, we study non-isochoric models for mixtures of solid particles, at high volume concentration, and a gas. One of the motivations for this work concerns geophysics and more particularly the pyroclastic density currents, whose dense basal parts are precisely mixtures of pyroclasts and lithic fragments and air. They are extremely destructive phenomena, capable of devastating urbanised areas, and are known to propagate over long distances, even over almost flat topography. Fluidisation of these dense granular flows by pore gas pressure is one response that could explain this behaviour and must therefore be taken into account in the models. Starting from a solid–gas mixing model and invoking the compressibility of the gas through a law of state, we rewrite the conservation of mass equation of the gas phase into an equation of the pore gas pressure whose net effect is to reduce the friction between the particles. The momentum equation of the solid phase is completed by generic constitutive laws, specified as in Schaeffer et al. (J. Fluid Mech., vol. 874, 2019, pp. 926–951) by a yield function and a dilatancy function. Therefore, the divergence of the velocity field, which reflects the ability of the granular flow to expand or compress, depends on the volume fraction, pressure, strain rate and inertial number. In addition, we require the dilatancy function to describe the rate of volume change of the granular material near an isochoric equilibrium state, i.e. at constant volume. This property ensures that the volume fraction, which is the solution to the conservation of mass equation, is positive and finite at all times. We also require that the non-isochoric fluidised model be linearly stable and dissipate energy (over time). In this theoretical framework, we derive the dilatancy models corresponding to classical rheologies such as Drucker–Prager and $\mu (I)$ (with or without expansion effects). The main result of this work is to show that it is possible to obtain non-isochoric and fluidised granular models satisfying all the properties necessary to correctly account for the physics of granular flows and which are well posed, at least linearly stable.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, K., Sundaresan, S. & Jackson, R. 1995 Instabilities and the formation of bubbles in fluidized beds. J. Fluid Mech. 303, 327366.CrossRefGoogle Scholar
Anderson, T.B. & Jackson, R. 1967 Fluid mechanical description of fluidized beds. Equations of motion. Ind. Engng Chem. Fundam. 6 (4), 527539.CrossRefGoogle Scholar
Andreotti, B., Forterre, Y. & Pouliquen, O. 2012 Les milieux granulaires-entre fluide et solide: Entre fluide et solide. EDP Sciences.Google Scholar
Anghel, D.-V., Strauss, M., McNamara, S., Flekkøy, E.G. & Måløy, K.J. 2006 Erratum: Grains and gas flow: molecular dynamics with hydrodynamic interactions [Phys. Rev. E 61, 4054 (2000)]. Phys. Rev. E 74 (2), 029906.CrossRefGoogle Scholar
Barker, T. & Gray, J.M.N.T. 2017 Partial regularisation of the incompressible $\mu (I)$-rheology for granular flow. J. Fluid Mech. 828, 532.CrossRefGoogle Scholar
Barker, T., Gray, J.M.N.T., Schaeffer, D.G. & Shearer, M. 2023 Well-posedness and ill-posedness of single-phase models for suspensions. J. Fluid Mech. 954, A17.CrossRefGoogle Scholar
Barker, T., Schaeffer, D.G., Bohórquez, P. & Gray, J.M.N.T. 2015 Well-posed and ill-posed behaviour of the $\mu (I)$-rheology for granular flow. J. Fluid Mech. 779, 794818.CrossRefGoogle Scholar
Barker, T., Schaeffer, D.G., Shearer, M. & Gray, J.M.N.T. 2017 Well-posed continuum equations for granular flow with compressibility and $\mu (I)$-rheology. Proc. R. Soc. Lond. A 473 (2201), 20160846.Google ScholarPubMed
Beetstra, R., van der Hoef, M.A. & Kuipers, J.A.M. 2007 Drag force of intermediate Reynolds number flow past mono-and bidisperse arrays of spheres. AIChE J. 53 (2), 489501.CrossRefGoogle Scholar
Berzi, D., Jenkins, J.T. & Richard, P. 2020 Extended kinetic theory for granular flow over and within an inclined erodible bed. J. Fluid Mech. 885, A27.CrossRefGoogle Scholar
Bouchut, F., Fernandez-Nieto, E.D., Mangeney, A. & Narbona-Reina, G. 2015 A two-phase shallow debris flow model with energy balance. ESAIM Math. Model. Numer. Anal. 49 (1), 101140.CrossRefGoogle Scholar
Breard, E.C.P., Fullard, L., Dufek, J., Tennenbaum, M., Fernandez Nieves, A. & Dietiker, J.F. 2022 Investigating the rheology of fluidized and non-fluidized gas-particle beds: implications for the dynamics of geophysical flows and substrate entrainment. Granul. Matt. 24 (1), 34.CrossRefGoogle Scholar
Carman, P.C. 1937 Fluid flow through a granular bed. Trans. Inst. Chem. Engrs London 15, 150156.Google Scholar
Carman, P.C. 1997 Fluid flow through granular beds. Chem. Engng Res. Des. 75, S32S48.CrossRefGoogle Scholar
Chupin, L., Dubois, T., Phan, M. & Roche, O. 2021 Pressure-dependent threshold in a granular flow: numerical modeling and experimental validation. J. Non-Newtonian Fluid Mech. 291, 104529.CrossRefGoogle Scholar
Da Cruz, F., Emam, S., Prochnow, M., Roux, J. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72 (2), 021309.CrossRefGoogle ScholarPubMed
Druitt, T.H. 2007 Pyroclastic density currents. Geol. Soc. Spec. Publ. 145 (1), 145182.CrossRefGoogle Scholar
Ergun, S. 1952 Fluid flow through packed columns. Chem. Engng Prog. 48 (2), 8994.Google Scholar
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40 (1), 124.CrossRefGoogle Scholar
Garzó, V. & Dufty, J.W. 1999 Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 58955911.CrossRefGoogle ScholarPubMed
GDR MiDi 2004 On dense granular flows. Eur. Phys. J. E 14, 341365.CrossRefGoogle Scholar
Gesenhues, L., Camata, J.J., Côrtes, A.M.A., Rochinha, F.A. & Coutinho, A.L.G.A. 2019 Finite element simulation of complex dense granular flows using a well-posed regularization of the $\mu (I)$-rheology. Comput. Fluids 188, 102113.CrossRefGoogle Scholar
Gidaspow, D. 1994 Multiphase Flow and Fluidization: Continuum and Kinetic Theory Description. Academic Press.Google Scholar
Goddard, J.D. & Lee, J. 2017 On the stability of the $\mu (I)$-rheology for granular flow. J. Fluid Mech. 833, 302331.CrossRefGoogle Scholar
Goren, L., Aharonov, E., Sparks, D. & Toussaint, R. 2010 Pore pressure evolution in deforming granular material: a general formulation and the infinitely stiff approximation. Geophys. Res. Solid Earth 115 (B9), B09216.Google Scholar
Gray, J.M.N.T. & Edwards, A.N. 2014 A depth-averaged-rheology for shallow granular free-surface flows. J. Fluid Mech. 755, 503534.CrossRefGoogle Scholar
Heyman, J., Delannay, R., Tabuteau, H. & Valance, A. 2017 Compressibility regularizes the $\mu (I)$-rheology for dense granular flows. J. Fluid Mech. 830, 553568.CrossRefGoogle Scholar
Ionescu, I.R., Mangeney, A., Bouchut, F. & Roche, O. 2015 Viscoplastic modeling of granular column collapse with pressure-dependent rheology. J. Non-Newtonian Fluid Mech. 219, 118.CrossRefGoogle Scholar
Jackson, R. 2000 The Dynamics of Fluidized Particles. Cambridge University Press.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2005 Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167192.CrossRefGoogle Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441, 727730.CrossRefGoogle ScholarPubMed
Kozeny, J. 1927 Über kapillare Leitung des Wassers im Boden: Aufstieg, Versickerung und Anwendung auf die Bewasserung. Math. Naturwiss. Abteilung 136, 271306.Google Scholar
Lagrée, P., Staron, L. & Popinet, S. 2011 The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a $\mu (I)$-rheology. J. Fluid Mech. 686, 378408.CrossRefGoogle Scholar
Lions, P.-L. 1998 Mathematical Topics in Fluid Mechanics. Volume 2: Compressible Models. Clarendon Press.Google Scholar
Martin, N., Ionescu, I.R., Mangeney, A., Bouchut, F. & Farin, M. 2017 Continuum viscoplastic simulation of a granular column collapse on large slopes: $\mu (I)$-rheology and lateral wall effects. Phys. Fluids 29 (1), 013301.CrossRefGoogle Scholar
McNamara, S., Flekkøy, E.G. & Måløy, K.J. 2000 Grains and gas flow: molecular dynamics with hydrodynamic interactions. Phys. Rev. E 61 (4), 40544059.CrossRefGoogle ScholarPubMed
Pailha, M. & Pouliquen, O. 2009 A two-phase flow description of the initiation of underwater granular avalanches. J. Fluid Mech. 633, 115135.CrossRefGoogle Scholar
Pitman, E.B. & Le, L. 2005 A two-fluid model for avalanche and debris flows. Phil. Trans. R. Soc. A 363 (1832), 15731601.CrossRefGoogle ScholarPubMed
Robinson, J.A., Holland, D.J. & Fullard, L. 2023 Complex behavior in compressible nonisochoric granular flows. Phys. Rev. Fluids 8 (1), 014304.CrossRefGoogle Scholar
Roche, O. 2012 Depositional processes and gas pore pressure in pyroclastic flows: an experimental perspective. Bull. Volcanol. 74 (8), 18071820.CrossRefGoogle Scholar
Roux, S. & Radjaï, F. 1998 Texture-dependent rigid-plastic behavior. In Physics of Dry Granular Media, pp. 229–236. Springer.CrossRefGoogle Scholar
Schaeffer, D.G., Barker, T., Tsuji, D., Gremaud, P., Shearer, M. & Gray, J.M.N.T. 2019 Constitutive relations for compressible granular flow in the inertial regime. J. Fluid Mech. 874, 926951.CrossRefGoogle Scholar
Wen, C.Y. & Yu, Y.H. 1966 Mechanics of fluidization. Chem. Engng Prog. Symp. Ser. 62, 100–111.Google Scholar
Wood, D.M. 1990 Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press.Google Scholar
Supplementary material: File

Chupin and Dubois supplementary material

Chupin and Dubois supplementary material
Download Chupin and Dubois supplementary material(File)
File 709 KB