Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T18:37:25.688Z Has data issue: false hasContentIssue false

Non-axisymmetric Homann stagnation-point flows

Published online by Cambridge University Press:  18 May 2012

P. D. Weidman*
Affiliation:
Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0427, USA
*
Email address for correspondence: weidman@colorado.edu

Abstract

A modification of Homann’s axisymmetric outer potential stagnation-point flow of strain rate is obtained by adding periodic radial and azimuthal velocities of the form and , respectively, where is a shear rate. This leads to the discovery of a new family of asymmetric viscous stagnation-point flows depending on the shear-to-strain-rate ratio that exist over the range . Numerical solutions for the wall shear stress parameters and the displacement thicknesses are given and compared with their large- asymptotic behaviours. Sample similarity velocity profiles are also presented.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Davey, A. 1961 Boundary layer flow at a saddle point of attachment. J. Fluid Mech. 10, 593610.CrossRefGoogle Scholar
2. Davey, A. 1963 Rotational flow near a forward stagnation point. Q. J. Mech. Appl. Math. 14, 3359.CrossRefGoogle Scholar
3. Davey, A. & Schofield, D. 1967 Three-dimensional flow near a two-dimensional stagnation point. J. Fluid Mech. 28, 149151.CrossRefGoogle Scholar
4. Hewitt, R. E., Duck, P. W. & Foster, M. R. 1999 Steady boundary-layer solutions for a swirling stratified fluid in a rotating cone. J. Fluid Mech. 384, 339374.CrossRefGoogle Scholar
5. Hewitt, R. E., Duck, P. W. & Stow, S. R. 2002 Continua of states in boundary-layer flows. J. Fluid Mech. 468, 121152.CrossRefGoogle Scholar
6. Hiemenz, K. 1911 Die Grenzschicht an einem in den fleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers J. 326, 321324.Google Scholar
7. Homann, F. 1936 Der Einfluss grosser Zähigkeit bei Strömung um Zylinder. Z. Angew. Math. Mech. 16, 153164.CrossRefGoogle Scholar
8. Howarth, L. 1951 The boundary layer equations in three dimensional flow. Part II. The flow near a stagnation point. Phil. Mag. 42, 14331440.CrossRefGoogle Scholar
9. Libby, P. A. 1967 Heat and mass transfer at a general three-dimensional stagnation point. AIAA J. 5, 507517.CrossRefGoogle Scholar
10. Libby, P. A. & Liu, T. 1967 Further solutions of the Falkner–Skan equation. SIAM J. Appl. Maths 22, 10401042.Google Scholar
11. Lighthill, M. J. 1958 On displacement thickness. J. Fluid Mech. 4, 383392.CrossRefGoogle Scholar
12. Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. 1989 Numerical Recipes. Cambridge University Press.Google Scholar
13. Rosenhead, L. 1963 Laminar Boundary Layers. Clarendon.Google Scholar
14. Schofield, D. & Davey, A. 1967 Dual solutions of the boundary-layer equations at a point of attachment. J. Fluid Mech. 30, 809811.CrossRefGoogle Scholar