Skip to main content Accessibility help

A new inviscid mode of instability in compressible boundary-layer flows

  • Adam P. Tunney (a1), James P. Denier (a2), Trent W. Mattner (a3) and John E. Cater (a1)


The stability of an almost inviscid compressible fluid flowing over a rigid heated surface is considered. We focus on the boundary layer that arises. The effect of surface heating is known to induce a streamwise acceleration in the boundary layer near the surface. This manifests in a streamwise velocity which exhibits a maximum larger than the free-stream velocity (i.e. the streamwise velocity exhibits an ‘overshoot’ region). We explore the impact of this overshoot on the stability of the boundary layer, demonstrating that the compressible form of the classical Rayleigh equation (which governs the development of short wavelength instabilities) possesses a new unstable mode that is a direct consequence of this overshoot. The structure of this new class of modes in the small wavenumber limit is detailed, providing a valuable confirmation of our numerical results obtained from the full inviscid eigenvalue problem.


Corresponding author

Email address for correspondence:


Hide All
Back, L. H. 1969 Flow and heat transfer in laminar boundary layers with swirl. AIAA J. 7 (9), 17811789.
Bae, Y. Y. & Emanuel, G. 1997 Tables for boundary-layer thicknesses of similar compressible laminar flow. J. Mech. Sci. Technol. 11 (4), 457467.
Brown, W. B. & Donoughe, P. L.1951 Tables of exact laminar-boundary-layer solutions when the wall is porous and fluid properties are variable. NACA Tech. Note 2479.
Cohen, C. B. & Reshotko, E.1955 Similar solutions for the compressible laminar boundary layer with heat transfer and pressure gradient. NACA Tech. Rep. 1293.
Curle, N. 1962 The Laminar Boundary Layer Equations. Oxford University Press.
Denier, J. P., Duck, P. W. & Li, J. 2005 On the growth (and suppression) of very short-scale disturbances in mixed forced-free convection boundary layers. J. Fluid Mech. 526, 147170.
Denier, J. P. & Mureithi, E. W. 1996 Weakly nonlinear wave motions in a thermally stratified boundary layer. J. Fluid Mech. 315, 293316.
Fedorov, A. V. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43 (1), 7995.
Fu, Y., Hall, P. & Blackaby, N. 1993 On the Görtler instability in hypersonic flows: Sutherland law fluids and real gas effects. Proc. R. Soc. Lond. A 342, 325377.
Gibson, D. W., Spisz, T. S., Taylor, J. C., Zalameda, J. N., Horvath, T. J., Tietjen, A. B., Tack, S. & Bush, B. C.2010 HYTHIRM radiance modeling and image analyses in support of STS-119, STS-125 and STS-128 space shuttle hypersonic re-entries. AIAA Paper 2010-245.
Hirschel, E. H. 1993 Hot experimental technique: a new requirement of aerothermodynamics. In New Trends in Instrumentation for Hypersonic Research (ed. Dwoyer, D. L. & Hussaini, M. Y.), NATO ASI Series, vol. 224, pp. 2539. Springer.
Lees, L. & Lin, C. C.1946 Investigation of the stability of the laminar boundary layer in a compressible fluid. NACA Tech. Note 1115.
Li, T. Y. & Nagamatsu, H. T. 1955 Similar solutions of compressible boundary layer equations. J. Aeronaut. Sci. 22, 607616.
Mack, L. M. 1975 Linear stability theory and the problem of supersonic boundary layer transition. AIAA J. 13, 278289.
Mack, L. M.1984 Special course on stability and transition of laminar flow. AGARD Report 709.
Mack, L. M. 1987 Review of linear compressible stability theory. In Stability of Time Dependent and Spatially Varying Flows (ed. Dwoyer, D. L. & Hussaini, M. Y.), pp. 164187. Springer.
Malik, M. R. 1990a Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86 (2), 376413.
Malik, M. R. 1990b Prediction and control of transition in supersonic and hypersonic boundary layers. AIAA J. 27, 14871493.
Masad, J. A., Nayfeh, A. H. & Al-Maaitah, A. A. 1992 Effect of heat transfer on the stability of compressible boundary layers. Comput. Fluids 21, 4361.
McLeod, J. B. & Serrin, J. 1968a The behaviour of similar solutions in a compressible boundary layer. J. Fluid Mech. 34 (02), 337342.
McLeod, J. B. & Serrin, J. 1968b The existence of similar solutions for some laminar boundary layer problems. Arch. Rat. Mech. Anal. 31, 288303.
Morkovin, M. V. & Reshotko, E. 1990 Dialogue on progress and issues in stability and transition research. In Laminar-Turbulent Transition (ed. Eppler, R. & Fasel, H.), pp. 329. Springer.
Mureithi, E. W., Denier, J. P. & Stott, J. 1997 The effect of buoyancy on upper-branch Tollmien–Schlichting wares. IMA J. Appl. Maths 58, 1950.
Neely, A. J., Dasgupta, A. & Choudhury, R. 2014 A new method for prescribing non-uniform wall temperatures on wind tunnel models. In Proceedings of the 19th Aust. Fluid Mech. Conference, Melbourne, Australia, 8–11 December, RMIT University.
Reshotko, E. & Beckwith, I. E.1957 Compressible laminar boundary layer over a yawed infinite cylinder with heat transfer and arbitrary Prandtl number. NACA Tech. Note 3986.
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.
Steinrück, H. 1994 Mixed convection over a cooled horizontal plate: non-uniqueness and numerical instabilities of the boundary-layer equations. J. Fluid Mech. 278, 251265.
Stewartson, K. 1964 The Theory of Laminar Boundary Layer in Compressible Fluids. Oxford University Press.
Zamelda, J. N., Horvath, T. J., Tomek, D. M., Tietjen, A. B., Gibson, D. M., Taylor, J. C., Tack, S., Bush, B. C., Mercer, C. D. & Shea E., J.2010 Application of a near infrared imaging system for thermographic imaging of the space shuttle during hypersonic re-entry. AIAA Paper 2010-244.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

A new inviscid mode of instability in compressible boundary-layer flows

  • Adam P. Tunney (a1), James P. Denier (a2), Trent W. Mattner (a3) and John E. Cater (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.