Skip to main content Accessibility help
×
Home

Multiple phoretic mechanisms in the self-propulsion of a Pt-insulator Janus swimmer

  • Yahaya Ibrahim (a1), Ramin Golestanian (a2) and Tanniemola B. Liverpool (a1) (a3)

Abstract

We present a detailed theoretical study which demonstrates that electrokinetic effects can also play a role in the motion of metallic-insulator spherical Janus particles. Essential to our analysis is the identification of the fact that the reaction rates depend on Pt-coating thickness and that the thickness of coating varies from pole to equator of the coated hemisphere. We find that their motion is due to a combination of neutral and ionic-diffusiophoretic as well as electrophoretic effects whose interplay can be changed by varying the ionic properties of the fluid. This has great potential significance for optimizing performance of designed synthetic swimmers.

Copyright

Corresponding author

Email address for correspondence: t.liverpool@bristol.ac.uk

References

Hide All
Anderson, J. L. 1989 Colloidal transport by interfacial forces. Annu. Rev. Fluid Mech. 21, 6199.
Anderson, J. L., Lowell, M. E. & Prieve, D. C. 1982 Motion of a particle generated by chemical gradients part 1. Non-electrolytes. J. Fluid Mech. 117, 107121.
Balasubramanian, S., Kagan, D., Manesh, K. M., Calvo-Marzal, P., Flechsig, G. U. & Wang, J. 2009 Thermal modulation of nanomotor movement. Small 5, 15691574.
Brady, J. F. 2011 Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives. J. Fluid Mech. 667, 216259.
Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O. & Bartolo, D. 2013 Emergence of macroscopic directed motion in populations of motile colloids. Nature 503 (7474), 9598.
Brown, A. & Poon, W. 2014 Ionic effects in self-propelled Pt-coated Janus swimmers. Soft Matt. 10 (22), 40164027.
Chandrasekhar, S. 1943 Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 189.
Das, S., Garg, A., Campbell, A. I., Howse, J. R., Sen, A., Velegol, D., Golestanian, R. & Ebbens, S. J. 2015 Boundaries can steer active Janus spheres. Nat. Commun. 6, 8999.
Dhar, P., Fischer, Th. M., Wang, Y., Mallouk, T. E., Paxton, W. F. & Sen, A. 2006 Autonomously moving nanorods at a viscous interface. Nano Lett. 6 (1), 6672.
Ebbens, S., Gregory, D. A., Dunderdale, G., Howse, J. R., Ibrahim, Y., Liverpool, T. B. & Golestanian, R. 2014 Electrokinetic effects in catalytic Pt-insulator Janus swimmers. Europhys. Lett. 106, 58003.
Ebbens, S., Tu, M.-H., Howse, J. R. & Golestanian, R. 2012 Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers. Phys. Rev. E 85 (2), 020401.
Farniya, A. A., Esplandiu, M. J., Reguera, D. & Bachtold, A. 2013 Imaging the proton concentration and mapping the spatial distribution of the electric field of catalytic micropumps. Phys. Rev. Lett. 111 (October), 15.
Gibbs, J. G. & Zhao, Y. P. 2009 Autonomously motile catalytic nanomotors by bubble propulsion. Appl. Phys. Lett. 94 (16), 163104(3).
Golestanian, R., Liverpool, T. & Ajdari, A. 2005 Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94 (22), 14.
Golestanian, R., Liverpool, T. B. & Ajdari, A. 2007 Designing phoretic micro- and nano-swimmers. New J. Phys. 9 (5), 126126.
Hall, S., Khudaish, E. A. & Hart, A. L. 1998 Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: effect of potential. Electrochim. Acta 43 (14–15), 20152024.
Hall, S. B., Khudaish, E. A. & Hart, A. L. 1999a Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part III: effect of temperature. Electrochim. Acta 44 (14), 24552462.
Hall, S. B., Khudaish, E. A. & Hart, A. L. 1999b Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part IV: phosphate buffer dependence. Electrochim. Acta 44 (25), 45734582.
Hall, S. B., Khudaish, E. A. & Hart, A. L. 2000 Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part V: inhibition by chloride. Electrochim. Acta 45, 35733579.
Howse, J., Jones, R., Ryan, A., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99 (4), 048102.
Jackson, J. D. 1975 Classical Electrodynamics. Wiley.
Kagan, D., Calvo-Marzal, P., Balasubramanian, S., Sattayasamitsathit, S., Manesh, K. M., Flechsig, G.-U. & Wang, J. 2009 Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131 (34), 12082.
Kapral, R. 2013 Perspective: nanomotors without moving parts that propel themselves in solution. J. Chem. Phys. 138 (2), 020901.
Katsounaros, I., Schneider, W. B., Meier, J. C., Benedikt, U., Biedermann, P. U., Auer, A. A. & Mayrhofer, K. J. J. 2012 Hydrogen peroxide electrochemistry on platinum: towards understanding the oxygen reduction reaction mechanism. Phys. Chem. Chem. Phys. 14, 73847391.
Kline, T. R., Paxton, W. F., Mallouk, T. E. & Sen, A. 2005a Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Intl Ed. Engl. 44 (5), 744746.
Kline, T. R., Paxton, W. F., Wang, Y., Velegol, D., Mallouk, T. E. & Sen, A. 2005b Catalytic micropumps: microscopic convective fluid flow and pattern formation. J. Am. Chem. Soc. 127 (49), 17150-1.
Kümmel, F., ten Hagen, B., Wittkowski, R., Buttinoni, I., Eichhorn, R., Volpe, G., Löwen, H. & Bechinger, C. 2013 Circular motion of asymmetric self-propelling particles. Phys. Rev. Lett. 110 (19), 198302.
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
Liu, Y., Wu, H., Li, M., Yin, J.-J. & Nie, Z. 2014 pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale 6 (20), 1190411910.
Marchetti, M. C., Joanny, J. F., Ramaswamy, S., Liverpool, T. B., Prost, J., Rao, M. & Simha, R. A. 2013 Hydrodynamics of soft active matter. Rev. Mod. Phys. 85 (3), 11431189.
McKee, D. W. 1969 Catalytic decomposition of hydrogen peroxide by metals and alloys of the platinum group. J. Catalysis 14 (4), 355364.
Michelin, S. & Lauga, E. 2014 Phoretic self-propulsion at finite Péclet numbers. J. Fluid Mech. 747, 572604.
Moran, J. L. & Posner, J. D. 2011 Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis. J. Fluid Mech. 680, 3166.
Pagonabarraga, I., Rotenberg, B. & Frenkel, D. 2010 Recent advances in the modelling and simulation of electrokinetic effects: bridging the gap between atomistic and macroscopic descriptions. Phys. Chem. Chem. Phys. 12 (33), 95669580.
Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J & Chaikin, P. M. 2013 Living crystals of light-activated colloidal surfers. Science 339 (6122), 936940.
Patra, D., Sengupta, S., Duan, W., Zhang, H., Pavlick, R. & Sen, A. 2013 Intelligent, self-powered, drug delivery systems. Nanoscale 5 (4), 12731283.
Paxton, W. F., Sen, A. & Mallouk, T. E. 2005 Motility of catalytic nanoparticles through self-generated forces. Chemistry 11 (22), 64626470.
Popescu, M. N., Dietrich, S. & Oshanin, G. 2009 Confinement effects on diffusiophoretic self-propellers. J. Chem. Phys. 130 (19), 194702.
Prieve, D. C., Anderson, J. L., Ebel, J. E. & Lowell, M. E. 1984 Motion of a particle generated by chemical gradients part 2. Electrolytes. J. Fluid Mech. 148, 247269.
Probstein, R. 2003 Physicochemical Hydrodynamics, 2nd edn. Wiley.
Rückner, G. & Kapral, R. 2007 Chemically powered nanodimers. Phys. Rev. Lett. 98 (15), 150603.
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1992 Colloidal Dispersions, 2nd edn. Cambridge University Press.
Sabass, B. & Seifert, U. 2010 Efficiency of surface-driven motion: nanoswimmers beat microswimmers. Phys. Rev. Lett. 105 (November), 14.
Sabass, B. & Seifert, U. 2012 Nonlinear, electrocatalytic swimming in the presence of salt. J. Chem. Phys. 136 (21), 214507.
Sharifi-Mood, N., Koplik, J. & Maldarelli, C. 2013 Diffusiophoretic self-propulsion of colloids driven by a surface reaction: the sub-micron particle regime for exponential and van der Waals interactions. Phys. Fluids 25 (1), 012001.
Theurkauff, I., Cottin-Bizonne, C., Palacci, J., Ybert, C. & Bocquet, L. 2012 Dynamic clustering in active colloidal suspensions with chemical signaling. Phys. Rev. Lett. 108 (26), 268303.
Valadares, L. F., Tao, Y. G., Zacharia, N. S., Kitaev, V., Galembeck, F., Kapral, R. & Ozin, G. A. 2010 Catalytic nanomotors: self-propelled sphere dimers. Small 6 (4), 565572.
Volpe, G., Buttinoni, I., Vogt, D., Kümmerer, H.-J. & Bechinger, C. 2011 Microswimmers in patterned environments. Soft Matt. 7 (19), 8810.
Wang, Y., Hernandez, R. M., Bartlett, D. J., Bingham, J. M., Kline, T. R., Sen, A. & Mallouk, T. E. 2006 Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22 (25), 1045110456.
Yariv, E. 2011 Electrokinetic self-propulsion by inhomogeneous surface kinetics. Proc. R. Soc. Lond. A 467 (2130), 16451664.
Zhao, G., Sanchez, S., Schmidt, O. G. & Pumera, M. 2013 Poisoning of bubble propelled catalytic micromotors: the chemical environment matters. Nanoscale 5 (7), 29092914.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed