Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T08:13:09.364Z Has data issue: false hasContentIssue false

Multiple phoretic mechanisms in the self-propulsion of a Pt-insulator Janus swimmer

Published online by Cambridge University Press:  04 September 2017

Yahaya Ibrahim
Affiliation:
School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
Ramin Golestanian
Affiliation:
Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
Tanniemola B. Liverpool*
Affiliation:
School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK BrisSynBio, Tyndall Avenue, Bristol BS8 1TQ, UK
*
Email address for correspondence: t.liverpool@bristol.ac.uk

Abstract

We present a detailed theoretical study which demonstrates that electrokinetic effects can also play a role in the motion of metallic-insulator spherical Janus particles. Essential to our analysis is the identification of the fact that the reaction rates depend on Pt-coating thickness and that the thickness of coating varies from pole to equator of the coated hemisphere. We find that their motion is due to a combination of neutral and ionic-diffusiophoretic as well as electrophoretic effects whose interplay can be changed by varying the ionic properties of the fluid. This has great potential significance for optimizing performance of designed synthetic swimmers.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. L. 1989 Colloidal transport by interfacial forces. Annu. Rev. Fluid Mech. 21, 6199.CrossRefGoogle Scholar
Anderson, J. L., Lowell, M. E. & Prieve, D. C. 1982 Motion of a particle generated by chemical gradients part 1. Non-electrolytes. J. Fluid Mech. 117, 107121.Google Scholar
Balasubramanian, S., Kagan, D., Manesh, K. M., Calvo-Marzal, P., Flechsig, G. U. & Wang, J. 2009 Thermal modulation of nanomotor movement. Small 5, 15691574.Google Scholar
Brady, J. F. 2011 Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives. J. Fluid Mech. 667, 216259.Google Scholar
Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O. & Bartolo, D. 2013 Emergence of macroscopic directed motion in populations of motile colloids. Nature 503 (7474), 9598.Google Scholar
Brown, A. & Poon, W. 2014 Ionic effects in self-propelled Pt-coated Janus swimmers. Soft Matt. 10 (22), 40164027.Google Scholar
Chandrasekhar, S. 1943 Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 189.Google Scholar
Das, S., Garg, A., Campbell, A. I., Howse, J. R., Sen, A., Velegol, D., Golestanian, R. & Ebbens, S. J. 2015 Boundaries can steer active Janus spheres. Nat. Commun. 6, 8999.Google Scholar
Dhar, P., Fischer, Th. M., Wang, Y., Mallouk, T. E., Paxton, W. F. & Sen, A. 2006 Autonomously moving nanorods at a viscous interface. Nano Lett. 6 (1), 6672.Google Scholar
Ebbens, S., Gregory, D. A., Dunderdale, G., Howse, J. R., Ibrahim, Y., Liverpool, T. B. & Golestanian, R. 2014 Electrokinetic effects in catalytic Pt-insulator Janus swimmers. Europhys. Lett. 106, 58003.CrossRefGoogle Scholar
Ebbens, S., Tu, M.-H., Howse, J. R. & Golestanian, R. 2012 Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers. Phys. Rev. E 85 (2), 020401.Google Scholar
Farniya, A. A., Esplandiu, M. J., Reguera, D. & Bachtold, A. 2013 Imaging the proton concentration and mapping the spatial distribution of the electric field of catalytic micropumps. Phys. Rev. Lett. 111 (October), 15.Google Scholar
Gibbs, J. G. & Zhao, Y. P. 2009 Autonomously motile catalytic nanomotors by bubble propulsion. Appl. Phys. Lett. 94 (16), 163104(3).CrossRefGoogle Scholar
Golestanian, R., Liverpool, T. & Ajdari, A. 2005 Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94 (22), 14.Google Scholar
Golestanian, R., Liverpool, T. B. & Ajdari, A. 2007 Designing phoretic micro- and nano-swimmers. New J. Phys. 9 (5), 126126.Google Scholar
Hall, S., Khudaish, E. A. & Hart, A. L. 1998 Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: effect of potential. Electrochim. Acta 43 (14–15), 20152024.Google Scholar
Hall, S. B., Khudaish, E. A. & Hart, A. L. 1999a Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part III: effect of temperature. Electrochim. Acta 44 (14), 24552462.Google Scholar
Hall, S. B., Khudaish, E. A. & Hart, A. L. 1999b Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part IV: phosphate buffer dependence. Electrochim. Acta 44 (25), 45734582.CrossRefGoogle Scholar
Hall, S. B., Khudaish, E. A. & Hart, A. L. 2000 Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part V: inhibition by chloride. Electrochim. Acta 45, 35733579.Google Scholar
Howse, J., Jones, R., Ryan, A., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99 (4), 048102.Google Scholar
Jackson, J. D. 1975 Classical Electrodynamics. Wiley.Google Scholar
Kagan, D., Calvo-Marzal, P., Balasubramanian, S., Sattayasamitsathit, S., Manesh, K. M., Flechsig, G.-U. & Wang, J. 2009 Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131 (34), 12082.CrossRefGoogle ScholarPubMed
Kapral, R. 2013 Perspective: nanomotors without moving parts that propel themselves in solution. J. Chem. Phys. 138 (2), 020901.CrossRefGoogle ScholarPubMed
Katsounaros, I., Schneider, W. B., Meier, J. C., Benedikt, U., Biedermann, P. U., Auer, A. A. & Mayrhofer, K. J. J. 2012 Hydrogen peroxide electrochemistry on platinum: towards understanding the oxygen reduction reaction mechanism. Phys. Chem. Chem. Phys. 14, 73847391.Google Scholar
Kline, T. R., Paxton, W. F., Mallouk, T. E. & Sen, A. 2005a Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Intl Ed. Engl. 44 (5), 744746.CrossRefGoogle ScholarPubMed
Kline, T. R., Paxton, W. F., Wang, Y., Velegol, D., Mallouk, T. E. & Sen, A. 2005b Catalytic micropumps: microscopic convective fluid flow and pattern formation. J. Am. Chem. Soc. 127 (49), 17150-1.Google Scholar
Kümmel, F., ten Hagen, B., Wittkowski, R., Buttinoni, I., Eichhorn, R., Volpe, G., Löwen, H. & Bechinger, C. 2013 Circular motion of asymmetric self-propelling particles. Phys. Rev. Lett. 110 (19), 198302.CrossRefGoogle ScholarPubMed
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.Google Scholar
Liu, Y., Wu, H., Li, M., Yin, J.-J. & Nie, Z. 2014 pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale 6 (20), 1190411910.Google Scholar
Marchetti, M. C., Joanny, J. F., Ramaswamy, S., Liverpool, T. B., Prost, J., Rao, M. & Simha, R. A. 2013 Hydrodynamics of soft active matter. Rev. Mod. Phys. 85 (3), 11431189.Google Scholar
McKee, D. W. 1969 Catalytic decomposition of hydrogen peroxide by metals and alloys of the platinum group. J. Catalysis 14 (4), 355364.Google Scholar
Michelin, S. & Lauga, E. 2014 Phoretic self-propulsion at finite Péclet numbers. J. Fluid Mech. 747, 572604.Google Scholar
Moran, J. L. & Posner, J. D. 2011 Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis. J. Fluid Mech. 680, 3166.CrossRefGoogle Scholar
Pagonabarraga, I., Rotenberg, B. & Frenkel, D. 2010 Recent advances in the modelling and simulation of electrokinetic effects: bridging the gap between atomistic and macroscopic descriptions. Phys. Chem. Chem. Phys. 12 (33), 95669580.Google Scholar
Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J & Chaikin, P. M. 2013 Living crystals of light-activated colloidal surfers. Science 339 (6122), 936940.Google Scholar
Patra, D., Sengupta, S., Duan, W., Zhang, H., Pavlick, R. & Sen, A. 2013 Intelligent, self-powered, drug delivery systems. Nanoscale 5 (4), 12731283.Google Scholar
Paxton, W. F., Sen, A. & Mallouk, T. E. 2005 Motility of catalytic nanoparticles through self-generated forces. Chemistry 11 (22), 64626470.Google Scholar
Popescu, M. N., Dietrich, S. & Oshanin, G. 2009 Confinement effects on diffusiophoretic self-propellers. J. Chem. Phys. 130 (19), 194702.Google Scholar
Prieve, D. C., Anderson, J. L., Ebel, J. E. & Lowell, M. E. 1984 Motion of a particle generated by chemical gradients part 2. Electrolytes. J. Fluid Mech. 148, 247269.Google Scholar
Probstein, R. 2003 Physicochemical Hydrodynamics, 2nd edn. Wiley.Google Scholar
Rückner, G. & Kapral, R. 2007 Chemically powered nanodimers. Phys. Rev. Lett. 98 (15), 150603.CrossRefGoogle ScholarPubMed
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1992 Colloidal Dispersions, 2nd edn. Cambridge University Press.Google Scholar
Sabass, B. & Seifert, U. 2010 Efficiency of surface-driven motion: nanoswimmers beat microswimmers. Phys. Rev. Lett. 105 (November), 14.CrossRefGoogle ScholarPubMed
Sabass, B. & Seifert, U. 2012 Nonlinear, electrocatalytic swimming in the presence of salt. J. Chem. Phys. 136 (21), 214507.Google Scholar
Sharifi-Mood, N., Koplik, J. & Maldarelli, C. 2013 Diffusiophoretic self-propulsion of colloids driven by a surface reaction: the sub-micron particle regime for exponential and van der Waals interactions. Phys. Fluids 25 (1), 012001.CrossRefGoogle Scholar
Theurkauff, I., Cottin-Bizonne, C., Palacci, J., Ybert, C. & Bocquet, L. 2012 Dynamic clustering in active colloidal suspensions with chemical signaling. Phys. Rev. Lett. 108 (26), 268303.CrossRefGoogle ScholarPubMed
Valadares, L. F., Tao, Y. G., Zacharia, N. S., Kitaev, V., Galembeck, F., Kapral, R. & Ozin, G. A. 2010 Catalytic nanomotors: self-propelled sphere dimers. Small 6 (4), 565572.Google Scholar
Volpe, G., Buttinoni, I., Vogt, D., Kümmerer, H.-J. & Bechinger, C. 2011 Microswimmers in patterned environments. Soft Matt. 7 (19), 8810.Google Scholar
Wang, Y., Hernandez, R. M., Bartlett, D. J., Bingham, J. M., Kline, T. R., Sen, A. & Mallouk, T. E. 2006 Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22 (25), 1045110456.Google Scholar
Yariv, E. 2011 Electrokinetic self-propulsion by inhomogeneous surface kinetics. Proc. R. Soc. Lond. A 467 (2130), 16451664.Google Scholar
Zhao, G., Sanchez, S., Schmidt, O. G. & Pumera, M. 2013 Poisoning of bubble propelled catalytic micromotors: the chemical environment matters. Nanoscale 5 (7), 29092914.Google Scholar