Skip to main content Accessibility help
×
Home

Motion and structure of atmospheric mesoscale baroclinic vortices: dry air and weak environmental shear

  • Eileen Päschke (a1), Patrik Marschalik (a2), Antony Z. Owinoh and Rupert Klein (a2)

Abstract

A strongly tilted, nearly axisymmetric vortex in dry air with asymmetric diabatic heating is analysed here by matched asymptotic expansions. The vortex is in gradient wind balance, with vortex Rossby numbers of order unity, and embedded in a quasi-geostrophic (QG) background wind with weak vertical shear. With wind speeds of , such vortices correspond to tropical storms or nascent hurricanes according to the Saffir–Simpson scale. For asymmetric heating, nonlinear coupling of the evolution equations for the vortex tilt, its core structure, and its influence on the QG background is found. The theory compares well with the established linear theory of precessing quasi-modes of atmospheric vortices, and it corroborates the relationship between vortex tilt and asymmetric potential temperature and vertical velocity patterns as found by Jones (Q. J. R. Meteorol. Soc., vol. 121, 1995, pp. 821–851) and Frank & Ritchie (Mon. Weath. Rev., vol. 127, 1999, pp. 2044–2061) in simulations of adiabatic tropical cyclones. A relation between the present theory and the local induction approximation for three-dimensional slender vortex filaments is established.

Copyright

Corresponding author

Email address for correspondence: rupert.klein@math.fu-berlin.de

Footnotes

Hide All

Dr Owinoh passed away while this paper was under revision.

Footnotes

References

Hide All
1. Afanasyev, Ya. D. & Peltier, W. R. 1998 Three-dimensional instability of anticyclonic swirling flow in rotating fluid: laboratory experiments and related theoretical predictions. Phys. Fluids 10 (12), 31943202.
2. Bronstein, I. & Semendjajew, K. 1979 Taschenbuch der Mathematik. Harri Deutsch.
3. Callegari, A. J. & Ting, L. 1978 Motion of a curved vortex filament with decaying vortical core and axial velocity. SIAM J. Appl. Maths 35 (1), 148175.
4. Charney, J. G. & Eliassen, A. 1964 On the growth of the hurricane depression. J. Atmos. Sci. 21, 6875.
5. Eckhaus, W. 1979 Asymptotic Analysis of Singular Perturbations, vol. 9. North-Holland.
6. Egger, J. 1992 Point vortices in a low-order model of barotropic flow on the sphere. Q. J. R. Meteorol. Soc. 118, 533552.
7. Eliassen, A. 1952 Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv. 5, 1960.
8. Emanuel, K. A. 1991 The theory of hurricanes. Annu. Rev. Fluid Mech. 23, 179196.
9. Emanuel, K. A. 2003 Tropical cyclones. Annu. Rev. Earth Planet. Sci. 31, 75104.
10. Frank, W. M. & Ritchie, E. A. 1999 Effects of environmental flow upon tropical cyclone structure. Mon. Weath. Rev. 127, 20442061.
11. Jones, S. 1995 The evolution of vortices in vertical shear i: initially barotropic vortices. Q. J. R. Meteorol. Soc. 121, 821851.
12. Jones, S. 2000 The evolution of vortices in vertical shear ii: large-scale asymmetries. Q. J. R. Meteorol. Soc. 126, 31373159.
13. Jones, S. 2004 On the ability of dry tropical-cyclone-like vortices to withstand vertical shear. J. Atmos. Sci 61, 114119.
14. Keller, J. B. & Ward, W. 1996 Asymptotics beyond all orders for a low Reynolds number flow. J. Engng Maths 30, 253265.
15. Klein, R. 2010 Scale-dependent asymptotic models for atmospheric flows. Annu. Rev. Fluid Mech. 42, 249274.
16. Klein, R. & Majda, A. J. 1991 Self-stretching of a perturbed vortex filament i: the asymptotic equation for deviations from a straight line. Physica D 49, 323352.
17. Ling, G. & Ting, L. 1988 Two-time scales inner solutions and motion of a geostrophic vortex. Sci. Sin. XXXI (7).
18. McWilliams, J. C., Graves, L. P. & Montgomery, M. T. 2003 A formal theory for vortex Rossby waves and vortex evolution. Geophys. Astrophys. Fluid Dyn. 97 (4), 275309.
19. Mikusky, E. 2007 On the structure of concentrated atmospheric vortices in a gradient wind regime and its motion on synoptic scales. PhD thesis, Universität Hamburg, Fachbereich Geowissenschaften.
20. Montgomery, M. T. & Kallenbach, R. K. 1997 A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Q. J. R. Meteorol. Soc. 123, 435465.
21. Morikawa, G. K. 1960 Geostrophic vortex motion. J. Meteorol. 17, 148158.
22. Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.
23. Plougonven, R. & Zeitlin, V. 2002 Internal gravity wave emission from a pancake vortex: An example of wave–vortex interaction in strongly stratified flows. Phys. Fluids 14, 12591268.
24. Reasor, P. D. & Montgomery, M. T. 2001 Three-dimensional alignment and corotation of weak, tc-like vortices via linear vortex rossby waves. J. Atmos. Sci 58, 23062330.
25. Reasor, P. D., Montgomery, M. T. & Grasso, L. D. 2004 A new look an the problem of tropical cyclones in vertical shear flow. J. Atmos. Sci. 61 (1), 322.
26. Reznik, G. M. 1992 Dynamics of singular vortices on a beta-plane. J. Fluid Mech. 240, 405432.
27. Reznik, G. M. & Grimshaw, R. 2001 Ageostrophic dynamics of an intense localized vortex on a -plane. J. Fluid Mech. 443, 351376.
28. Reznik, G. & Kizner, Z. 2007a Two-layer quasi-geostrophic singular vortices embedded in a regular flow. Part 1. Invariants of motion and stability of vortex pairs. J. Fluid Mech. 584, 185202.
29. Reznik, G. & Kizner, Z. 2007b Two-layer quasi-geostrophic singular vortices embedded in a regular flow. Part 2. Steady and unsteady drift of individual vortices on a beta-plane. J. Fluid Mech. 584, 203223.
30. Ricca, R. L. 1991 Rediscovery of da rios equations. Nature 352, 561562.
31. Schecter, D. A. & Montgomery, M. T. 2003 On the symmetrization rate of an intense geophysical vortex. Dyn. Atmos. Oceans 37, 5588.
32. Schecter, D. A. & Montgomery, M. T. 2004 Damping and pumping of a vortex Rossby wave in a monotonic cyclone: critical layer stirring versus inertia–buoyancy wave emission. Phys. Fluids 16, 13341348.
33. Schecter, D. A. & Montgomery, M. T. 2006 Conditions that inhibit the spontaneous radiation of spiral inertia–gravity waves from an intense mesoscale cyclone. J. Atmos. Sci 63, 435456.
34. Schecter, D. A. & Montgomery, M. T. 2007 Waves in a cloudy vortex. J. Atmos. Sci 64, 314337.
35. Schecter, D. A., Montgomery, M. T. & Reasor, P. D. 2002 A theory for the vertical alignment of a quasigeostrophic vortex. J. Atmos. Sci 59, 150168.
36. Schubert, W. H. & Hack, J. J. 1983 Transformed Eliassen balanced vortex model. J. Atmos. Sci 39, 16871697.
37. Shapiro, L. J. & Montgomery, M. T. 1993 A three-dimensional theory for rapidly rotating vortices. J. Atmos. Sci 50, 33223335.
38. Smith, R. K. 1991 An analytic theory of tropical-cyclone motion in a barotropic shear flow. Q. J. R. Meteorol. Soc. 47, 685714.
39. Smith, R. & Montgomery, M. T. 2010 Hurricane boundary-layer theory. Q. J. R. Meteorol. Soc. 136, 16651670.
40. Smith, R. K. & Ulrich, W. 1990 An analytic theory of tropical cyclone motion using a barotropic model. J. Atmos. Sci 47, 19731986.
41. Stewart, H. J. 1943 Periodic properties of the semi-permanent atmospheric pressure systems. Q. Appl. Maths 1, 262267.
42. Ting, L., Klein, R. & Knio, O. M. 2007 Vortex Dominated Flows: Analysis and Computation for Multiple Scales, Series in Applied Mathematical Sciences , vol. 116. Springer.
43. Ting, L. & Ling, G. 1983 Studies on the motion and core structure of a geostrophic vortex. In Proc. 2nd Asian Congress of Fluid Mechanics, pp. 900905. Science Press.
44. Van Dyke, M. 1964 Perturbation Methods in Fluid Mechanics. Academic.
45. Wirth, V. & Dunkerton, T. J. 2009 The dynamics of eye formation and maintenance in axisymmetric diabatic vortices. J. Atmos. Sci 66, 36013620.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Motion and structure of atmospheric mesoscale baroclinic vortices: dry air and weak environmental shear

  • Eileen Päschke (a1), Patrik Marschalik (a2), Antony Z. Owinoh and Rupert Klein (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed