Skip to main content Accessibility help

Modelling statistical wave interferences over shear currents

  • Gal Akrish (a1), Pieter Smit (a2), Marcel Zijlema (a1) and Ad Reniers (a1)


Wave forecasting in ocean and coastal waters commonly relies on spectral models based on the spectral action balance equation. These models assume that different wave components are statistically independent and as a consequence cannot resolve wave interference due to statistical correlation between crossing waves, as may be found in, for instance, a focal zone. This study proposes a statistical model for the evolution of wave fields over non-uniform currents and bathymetry that retains the information on the correlation between different wave components. To this end, the quasi-coherent model (Smit & Janssen, J. Phys. Oceanogr., vol. 43, 2013, pp. 1741–1758) is extended to allow for wave–current interactions. The outcome is a generalized action balance model that predicts the evolution of the wave statistics over variable media, while preserving the effect of wave interferences. Two classical examples of wave–current interaction are considered to demonstrate the statistical contribution of wave interferences: (1) swell field propagation over a jet-like current and (2) the interaction of swell waves with a vortex ring. In both examples cross-correlation terms lead to development of prominent interference structures, which significantly change the wave statistics. Comparison with results of the SWAN model demonstrates that retention of cross-correlation terms is essential for accurate prediction of wave statistics in shear-current-induced focal zones.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modelling statistical wave interferences over shear currents
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modelling statistical wave interferences over shear currents
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modelling statistical wave interferences over shear currents
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence:


Hide All
Ardhuin, F., Gille, S. T., Menemenlis, D., Rocha, C. B., Rascle, N., Chapron, B., Gula, J. & Molemaker, J. 2017 Small-scale open ocean currents have large effects on wind wave heights. J. Geophys. Res. 122 (6), 45004517.10.1002/2016JC012413
Ardhuin, F., O’reilly, W., Herbers, T. & Jessen, P. 2003 Swell transformation across the continental shelf. Part I. Attenuation and directional broadening. J. Phys. Oceanogr. 33 (9), 19211939.
Belibassakis, K., Gerostathis, T. P. & Athanassoulis, G. 2011 A coupled-mode model for water wave scattering by horizontal, non-homogeneous current in general bottom topography. Appl. Ocean Res. 33 (4), 384397.
Besieris, I. M. 1985 Wave-kinetic method, phase-space path integrals, and stochastic wave propagation. J. Opt. Soc. Am. A 2 (12), 20922099.
Besieris, I. M. & Tappert, F. D. 1976 Stochastic wave-kinetic theory in the Liouville approximation. J. Math. Phys. 17 (5), 734743.10.1063/1.522971
Booij, N., Ris, R. C. & Holthuijsen, L. H. 1999 A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. 104 (C4), 76497666.
Bowen, A. J. 1969 Rip currents: 1. Theoretical investigations. J. Geophys. Res. 74 (23), 54675478.10.1029/JC074i023p05467
Bretherton, F. P. & Garrett, C. J. R. 1968 Wavetrains in inhomogeneous moving media. Proc. R. Soc. Lond. A 302 (1471), 529554.
Chawla, A., Özkan-Haller, H. T. & Kirby, J. T. 1998 Spectral model for wave transformation and breaking over irregular bathymetry. ASCE J. Waterway Port Coastal Ocean Engng 124 (4), 189198.10.1061/(ASCE)0733-950X(1998)124:4(189)
Chen, Q., Dalrymple, R. A., Kirby, J. T., Kennedy, A. B. & Haller, M. C. 1999 Boussinesq modeling of a rip current system. J. Geophys. Res. 104 (C9), 2061720637.10.1029/1999JC900154
Cohen, L. 2012 The Weyl Operator and Its Generalization. Springer Science & Business Media.
Craik, A. D. & Leibovich, S. 1976 A rational model for langmuir circulations. J. Fluid Mech. 73 (3), 401426.
Deigaard, R. et al. 1992 Mechanics of Coastal Sediment Transport, vol. 3. World Scientific Publishing Company.
Dingemans, M. W. 1997 Water Wave Propagation Over Uneven Bottoms, vol. 13. World Scientific.
Dyhr-Nielsen, M. & Sørensen, T. 1970 Some sand transport phenomena on coasts with bars. Coast. Engng Proc. 12, 855865.
Fedele, F., Brennan, J., De León, S. P., Dudley, J. & Dias, F. 2016 Real world ocean rogue waves explained without the modulational instability. Sci. Rep. 6, 27715.10.1038/srep27715
Group, T. W. 1988 The WAM model: a third generation ocean wave prediction model. J. Phys. Oceanogr. 18 (12), 17751810.
Hirsch, C. 2007 Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics. Elsevier.
Hlawatsch, F. & Flandrin, P. 1997 The interference structure of the wigner distribution and related time-frequency signal representations. In The Wigner Distribution Theory and Applications in Signal Processing, pp. 59133. Elsevier.
Holmes, M. H. 2012 Introduction to Perturbation Methods, vol. 20. Springer Science & Business Media.
Janssen, T., Herbers, T. & Battjes, J. 2008 Evolution of ocean wave statistics in shallow water: refraction and diffraction over seafloor topography. J. Geophys. Res. 113 (C3).
Janssen, T. T. & Herbers, T. 2009 Nonlinear wave statistics in a focal zone. J. Phys. Oceanogr. 39 (8), 19481964.
Kirby, J. T. & Dalrymple, R. A. 1986 An approximate model for nonlinear dispersion in monochromatic wave propagation models. Coast. Engng 9 (6), 545561.
Krasitskii, V. P. 1994 On reduced equations in the hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech. 272, 120.
Lapidoth, A. 2017 A Foundation in Digital Communication. Cambridge University Press.10.1017/9781316822708
Longuet-Higgins, M. S. 1970 Longshore currents generated by obliquely incident sea waves. Part 1. J. Geophys. Res. 75 (33), 67786789.
Mapp, G. R., Welch, C. S. & Munday, J. C. 1985 Wave refraction by warm core rings. J. Geophys. Res. 90 (C4), 71537162.10.1029/JC090iC04p07153
McWilliams, J. C. 2016 Submesoscale currents in the ocean. Proc. R. Soc. Lond. A 472 (2189), 20160117.
McWilliams, J. C. 2018 Surface wave effects on submesoscale fronts and filaments. J. Fluid Mech. 843, 479517.
Metzger, J. J., Fleischmann, R. & Geisel, T. 2014 Statistics of extreme waves in random media. Phys. Rev. Lett. 112 (20), 203903.10.1103/PhysRevLett.112.203903
Papoulis, A. & Pillai, S. U. 2002 Probability, Random Variables, and Stochastic Processes. Tata McGraw-Hill Education.
Poje, A. C., Özgökmen, T. M., Lipphardt, B. L., Haus, B. K., Ryan, E. H., Haza, A. C., Jacobs, G. A., Reniers, A., Olascoaga, M. J., Novelli, G. et al. 2014 Submesoscale dispersion in the vicinity of the deepwater horizon spill. Proc. Natl Acad. Sci. USA 111 (35), 1269312698.
Reniers, A. & Battjes, J. 1997 A laboratory study of longshore currents over barred and non-barred beaches. Coast. Engng 30 (1–2), 121.
Rice, S. O. 1945 Mathematical analysis of random noise. Bell Syst. Tech. J. 24 (1), 46156.
Roelvink, D., Reniers, A., Van Dongeren, A., de Vries, J. v. T., McCall, R. & Lescinski, J. 2009 Modelling storm impacts on beaches, dunes and barrier islands. Coast. Engng 56 (11–12), 11331152.
Ruessink, B., Miles, J., Feddersen, F., Guza, R. & Elgar, S. 2001 Modeling the alongshore current on barred beaches. J. Geophys. Res. 106 (C10), 2245122463.
Smit, P. & Janssen, T. 2013 The evolution of inhomogeneous wave statistics through a variable medium. J. Phys. Oceanogr. 43 (8), 17411758.
Smit, P., Janssen, T. & Herbers, T. 2015a Stochastic modeling of coherent wave fields over variable depth. J. Phys. Oceanogr. 45 (4), 11391154.
Smit, P., Janssen, T. & Herbers, T. 2015b Stochastic modeling of inhomogeneous ocean waves. Ocean Model. 96, 2635.
Soong, T. T. 1973 Random Differential Equations in Science and Engineering. Elsevier.
Stive, M. J. & De Vriend, H. J. 1994 Shear stresses and mean flow in shoaling and breaking waves. Coast. Engng Proc. 24, 594608.
Tolman, H. L. 1991 A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr. 21 (6), 782797.
Van Groesen, E. & Molenaar, J. 2007 Continuum Modeling in the Physical Sciences, vol. 13. Siam.
Van Rijn, L. C. 1993 Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas, vol. 1006. Aqua Publications.
Vellinga, P. 1982 Beach and dune erosion during storm surges. Coast. Engng 6 (4), 361387.
Vincent, C. L. & Briggs, M. J. 1989 Refraction–diffraction of irregular waves over a mound. J. Waterway Port Coastal Ocean Engng 115 (2), 269284.
Yoon, S. B. & Liu, P. L.-F. 1989 Interactions of currents and weakly nonlinear water waves in shallow water. J. Fluid Mech. 205, 397419.
Zijlema, M. & van der Westhuysen, A. J. 2005 On convergence behaviour and numerical accuracy in stationary swan simulations of nearshore wind wave spectra. Coastal Engng 52 (3), 237256.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Modelling statistical wave interferences over shear currents

  • Gal Akrish (a1), Pieter Smit (a2), Marcel Zijlema (a1) and Ad Reniers (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.