Skip to main content Accessibility help

Modelling of material pitting from cavitation bubble collapse

  • Chao-Tsung Hsiao (a1), A. Jayaprakash (a1), A. Kapahi (a1), J.-K. Choi (a1) and Georges L. Chahine (a1)...


Material pitting from cavitation bubble collapse is investigated numerically including two-way fluid–structure interaction (FSI). A hybrid numerical approach which links an incompressible boundary element method (BEM) solver and a compressible finite difference flow solver is applied to capture non-spherical bubble dynamics efficiently and accurately. The flow codes solve the fluid dynamics while intimately coupling the solution with a finite element structure code to enable simulation of the full FSI. During bubble collapse high impulsive pressures result from the impact of the bubble re-entrant jet on the material surface and from the collapse of the remaining bubble ring. A pit forms on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress. The results depend on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall, and the pressure driving the bubble collapse. The effects of these parameters on the re-entrant jet, the following bubble ring collapse pressure, and the generated material pit characteristics are investigated.


Corresponding author

Email address for correspondence:


Hide All
Amirkhizi, A. V., Isaacs, J., McGee, J. & Nemat-Nasser, S. 2006 An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects. Phil. Mag. 86 (36), 58475866.
Anderson, J. D. 1990 Modern Compressible Flow: with Historical Perspective, vol. 12. McGraw-Hill.
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19, 99124.
Brennen, C. E. 1995 Cavitation and Bubble Dynamics. Oxford University Press.
Chahine, G. L. 1982 Experimental and asymptotic study of non-spherical bubble collapse. Appl. Sci. Res. 38, 187197.
Chahine, G. L. 1993 Cavitation dynamics at microscale level. J. Heart Valve Dis. 3, 102116.
Chahine, G. L. 2014 Modeling of cavitation dynamics and interaction with material. In Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction (ed. Kim, K. H., Chahine, G. L., Franc, J. P. & Karimi, A.), chap. 6. Springer.
Chahine, G. L., Annasami, R., Hsiao, C.-T. & Harris, G. 2006 Scaling rules for the prediction on UNDEX bubble re-entering jet parameters. SAVIAC Crit. Technol. Shock Vib. 4 (1), 112.
Chahine, G. L., Duraiswami, R. & Kalumuck, K. M.1996 Boundary element method for calculating 2-D and 3-D underwater explosion bubble loading on nearby structures. Report NSWCDD/TR-93/46. Naval Surface Warfare Center, Weapons Research and Technology Department, September (limited distribution).
Chahine, G. L. & Kalumuck, K. M. 1998a BEM software for free surface flow simulation including fluid structure interaction effects. Intl J. Comput. Appl. Technol. 11 (3/4/5), 177199.
Chahine, G. L. & Kalumuck, K. M. 1998b The influence of structural deformation on water jet impact loading. J. Fluids Struct. 12 (1), 103121.
Chahine, G. L. & Perdue, T. O. 1990 Simulation of the three-dimensional behavior of an unsteady large bubble near a structure. In 3rd International Colloquium on Drops and Bubbles, Monterey, CA, AIP Conf. Proc., vol. 197, p. 188.
Chahine, G. L. & Shen, Y. T. 1986 Bubble dynamics and cavitation inception in cavitation susceptibility meter. Trans. ASME: J. Fluids Engng 108, 444452.
Colella, P. 1985 A direct Eulerian MUSCL scheme for gas dynamics. SIAM J. Sci. Stat. Comput. 6 (1), 104117.
Crum, L. A. 1979 Surface oscillations and jet development in pulsating bubbles. J. Phys. Paris 40 (supplément au N. 11), c8-285 colloque c8.
Duncan, J. H., Milligan, C. D. & Zhange, S. 1991 On the interaction of a collapsing cavity and a compilant wall. J. Fluid Mech. 226, 401423.
Duncan, J. H., Milligan, C. D. & Zhang, S. 1996 On the interaction between a bubble and submerged compliant structure. J. Sound Vib. 197, 1744.
Harris, G. S., Illamni, R., Lewis, W., Rye, K. & Chahine, G. L.2009 Underwater explosion bubble phenomena tests near a simulated dam structure. IHTR 10-3055, November 1. Naval Surface Warfare Center – Indian Head Division.
Hsiao, C.-T. & Chahine, G. L. 2013a Development of compressible–incompressible link to efficiently model bubble dynamics near floating body. Adv. Bound. Element Meshless Tech. XIV, 141152.
Hsiao, C.-T. & Chahine, G. L. 2013b Breakup of finite thickness viscous shell microbubbles by ultrasound: a simplified zero thickness shell model. J. Acoust. Soc. Am. 133 (4), 18971910.
Jayaprakash, A., Hsiao, C.-T. & Chahine, G. L. 2012 Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall. Trans. ASME: J. Fluids Engng 134, 031301.
Jones, I. R. & Edwards, D. H. 1960 An experimental study of the forces generated by the collapse of transient cavities in water. J. Fluid Mech. 7, 596609.
Kalumuck, K. M., Chahine, G. L. & Hsiao, C.-T. 2003 Simulation of surface piercing body coupled response to underwater bubble dynamics utilizing 3DynaFS©, a three-dimensional BEM code. Comput. Mech. 32, 319326.
Kalumuck, K. M., Duraiswami, R. & Chahine, G. L. 1995 Bubble dynamics fluid–structure interaction simulation on coupling fluid BEM and structural FEM codes. J. Fluids Struct. 9, 861883.
Kapahi, A., Hsiao, C.-T. & Chahine, G. L. 2014 A multi-material flow solver for high speed compressible flow applications. Comput. Fluids (in press).
Key, S. W.1974 HONDO-a finite element computer program for the large deformation dynamics response of axisymmetric solids. Report 74-0039. Sandia National Laboratories, Albuquerque, NM.
Kim, K. H., Chahine, G. L., Franc, J. P. & Karimi, A. 2014 Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction. Springer.
Madadi-Kandjani, E. & Xiong, Q. 2014 Validity of the spring-backed membrane model for bubble-wall interactions with compliant walls. Comput. Fluids 96, 116121.
Naude, C. F. & Ellis, A. T. 1961 On the mechanism of cavitation damage by non-hemispherical cavities collapsing in contact with a solid boundary. Trans. ASME: J. Basic Engng 83, 648656.
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.
Plesset, M. S. & Chapman, R. B. 1971 Collapse of an initially spherical vapour cavity in the neighborhood of a solid boundary. J. Fluid Mech. 47 (2), 283290.
Rayleigh, Lord 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34, 9498.
Vogel, A. & Lauterborn, W. 1988 Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 84, 719731.
Wang, Q. X. 2013 Underwater explosion bubble dynamics in a compressible liquid. Phys. Fluids 25, 072104.
Wang, Q. X. & Blake, J. R. 2010 Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J. Fluid Mech. 659, 191224.
Wang, Q. X. & Blake, J. R. 2011 Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave. J. Fluid Mech. 679, 559581.
Wardlaw, A. B. Jr. & Luton, A. J. 2000 Fluid structure interaction for close-in explosion. Shock Vib. 7, 265275.
Wardlaw, A. B., Luton, J. A., Renzi, J. R., Kiddy, K. C. & McKeown, R. M.2003 The Gemini Euler solver for the coupled simulation of underwater explosions. Tech. Rep. 2500, November. Naval Surface Warfare Center – Indian Head Division.
Whirley, R. G. & Engelmann, B. E.1993 DYNA3D: a nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics – user manual. Rep. UCRL-MA-107254 Rev. 1. Lawrence Livermore National Laboratory, November.
Zel’Dovich, Y. B. & Raizer, Y. P. 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover.
Zhang, S., Duncan, J. H. & Chahine, G. L. 1993 The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 257, 147181.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Modelling of material pitting from cavitation bubble collapse

  • Chao-Tsung Hsiao (a1), A. Jayaprakash (a1), A. Kapahi (a1), J.-K. Choi (a1) and Georges L. Chahine (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed