Skip to main content Accessibility help
×
Home

Measurements of the budgets of the subgrid-scale stress and temperature flux in a convective atmospheric surface layer

  • Khuong X. Nguyen (a1), Thomas W. Horst (a2), Steven P. Oncley (a2) and Chenning Tong (a1)

Abstract

The dynamics of the subgrid-scale (SGS) stress and scalar flux in the convective atmospheric surface layer are studied through the budgets of the SGS turbulence kinetic energy (TKE), the SGS stress and the SGS temperature flux using field measurements from the Advection Horizontal Array Turbulence Study (AHATS). The array technique, which employs sensor arrays to perform filter operations to obtain the SGS velocity and temperature, is extended to include pressure sensors to measure the fluctuating pressure, enabling separation of the resolvable- and subgrid-scale pressure, and therefore for the first time allowing for measurement of the pressure covariance terms and the full SGS budgets. The non-dimensional forms of the SGS budget terms are obtained as functions of the stability parameter $z/ L$ and the ratio of the wavelength of the spectral peak of the vertical velocity to the filter width, ${\Lambda }_{w} / {\Delta }_{f} $ . The results show that the SGS TKE budget is a balance among the production, transport and dissipation. The SGS shear stress budget and the SGS temperature flux budgets are dominated by the production and pressure destruction, with the latter causing return to isotropy. The budgets of the SGS normal stress components are more complex. Most notably the pressure–strain-rate correlation includes two competing processes, return to isotropy and generation of anisotropy, the latter due to ground blockage of the large convective eddies. For neutral surface layers, return to isotropy dominates. For unstable surface layers return to isotropy dominates for small filter widths, whereas for large filter widths the ground blockage effect dominates, resulting in strong anisotropy. The results in the present study, particularly for the pressure–strain-rate correlation, have strong implications for modelling the SGS stress and flux using their transport equations in the convective atmospheric boundary layer.

Copyright

Corresponding author

Email address for correspondence: ctong@ces.clemson.edu

References

Hide All
Bardina, J., Ferziger, J. H. & Reynolds, W. C. 1980 Improved subgrid-scale models for large-eddy simulation. AIAA Paper 80-1357.
Borue, V. & Orszag, S. 1998 Local energy flux and subgrid-scale statistics in three-dimensional turbulence. J. Fluid Mech. 366, 131.
Bou-Zeid, E., Higgins, C., Huwald, H., Meneveau, C. & Parlange, M. B. 2010 Field study of the dynamics and modelling of subgrid-scale turbulence in a stable atmospheric surface layer over a glacier. J. Fluid Mech. 665, 480515.
Bradley, E. F., Antonia, R. A. & Chambers, A. J. 1981 Turbulence Reynolds number and the turbulent kinetic energy balance in the atmospheric surface layer. Boundary-Layer Meteorol. 21, 183197.
Caughey, S. J. & Wyngaard, J. C. 1979 The turbulence kinetic energy budget in convective conditions. Q. J. R. Meteorol. Soc. 105, 231239.
Cerutti, S., Meneveau, C. & Knio, O. M. 2000 Spectral and hyper eddy viscosity in high-Reynolds-number turbulence. J. Fluid Mech. 421, 307338.
Chen, Q., Liu, S. & Tong, C. 2010 Investigation of the subgrid-scale fluxes and their production rates in a convective atmospheric surface layer using measurement data. J. Fluid Mech. 660, 282315.
Chen, Q. & Tong, C. 2006 Investigation of the subgrid-scale stress and its production rate in a convective atmospheric boundary layer using measurement data. J. Fluid Mech. 547, 65104.
Chen, Q., Zhang, H., Wang, D. & Tong, C. 2003 Subgrid-scale stress and its production rate: conditions for the resolvable-scale velocity probability density function. J. Turbul. 4, N27.
Clark, R. A., Ferziger, J. H. & Reynolds, W. C. 1979 Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91, 116.
Deardorff, J. W. 1970 A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453480.
Deardorff, J. W. 1972 Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci. 29, 91115.
Deardorff, J. W. 1973 The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence. J. Fluids Engng 95, 429438.
Deardorff, J. W. 1980 Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol. 18, 495527.
Domaradzki, J. A., Liu, W. & Brachet, M. E. 1993 An analysis of subgrid-scale interactions in numerically simulated isotropic turbulence. Phys. Fluids A 5, 17471759.
Elliott, J. A. 1972 Microscale pressure fluctuations measured within the lower atmospheric boundary layer. J. Fluid Mech. 53, 351383.
Fu, S., Launder, B. E. & Tselepidakis, D. P. 1987 Accommodating the effects of high strain rates in modelling the pressure–strain correlation. Tech. Rep. Mechanical Engineering Department Report TFD/87/5, UMIST.
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 17601765.
Gibson, M. M. & Launder, B. E. 1978 Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86, 491511.
Hatlee, S. C. & Wyngaard, J. C. 2007 Improved subfilter-scale models from the HATS field data. J. Atmos. Sci. 64, 16941705.
Higgins, C. W., Froidevaux, M., Simeonov, V., Vercauteren, N., Barry, C. & Parlange, M. B. 2012 The effect of scale on the applicability of Taylor’s frozen turbulence hypothesis in the atmospheric boundary layer. Boundary-Layer Meteorol. 143, 379391.
Higgins, C. W., Parlange, M. B. & Meneveau, C. 2007 The effect of filter dimension on the subgrid-scale stress, heat flux, and tensor alignments in the atmospheric surface layer. J. Atmos. Ocean. Tech. 24, 360375.
Högström, U. 1990 Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J. Atmos. Sci. 47, 19491972.
Horst, T. W., Kleissl, J., Lenschow, D. H., Meneveau, C., Moeng, C.-H., Parlange, M. B., Sullivan, P. P. & Weil, J. C. 2004 HATS: Field observations to obtain spatially-filtered turbulence fields from transverse arrays of sonic anemometers in the atmosperic surface flux layer. J. Atmos. Sci. 61, 15661581.
Kaimal, J. C. & Finnigan, J. J. 1994 Atmospheric Boundary Layer Flows. Oxford University Press.
Kaimal, J. C., Wyngaard, J. C., Izumi, Y & Coté, O. R. 1972 Spectral characteristic of surface-layer turbulence. Q. J. R. Meteorol. Soc. 98, 563589.
Khanna, S. & Brasseur, J. G. 1998 Three-dimensional buoyancy- and shear-induced local structure of the atmospheric boundary layer. J. Atmos. Sci. 55, 710743.
Kleissl, J, Meneveau, C. & Parlange, M. 2003 On the magnitude and variability of subgrid-scale eddy-diffusion coefficients in the atmospheric surface layer. J. Atmos. Sci. 60, 23722388.
Kristensen, L., Mann, J., Oncley, S. P. & Wyngaard, J. C. 1997 How close is close enough when measuring scalar fluxes with displaced sensors? J. Atmos. Ocean. Tech. 14, 814821.
Launder, B. E., Reece, G. J. & Rodi, W. 1975 Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68 (3), 537566.
Lenschow, D. H., Mann, J. & Kristensen, L. 1993 How long is long enough when measuring fluxes and other turbulence statistics? Tech. Rep. NCAR/TN-389 + STR. National Center for Atmospheric Research.
Lenschow, D. H. & Raupach, M. R. 1991 The attenuation of fluctuations in scalar concentrations through sampling tubes. J. Geophys. Res. 96, 1525915268.
Leonard, A. 1974 Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. in Geophys. 18, 237248.
Lilly, D. K. 1967 The representation of small-scale turbulence in numerical simulation experiments. In Proceedings IBM Scientific Computing Symposium on Environmental Science (ed. Goldstine, H. H.). pp. 195210.
Ludwig, F. L., Chow, F. K. & Street, R. L. 2009 Effect of turbulence models and spatial resolution on resolved velocity structure and momentum fluxes in large-eddy simulations of neutral boundary layer flow. J. Appl. Meteorol. Climatol. 48, 11611180.
Lumley, J. L. 1965 Interpretation of time spectra measured in high-intensity shear flows. Phys. Fluids 6, 10561062.
Lumley, J. L. 1978 Computational modelling of turbulent flows. Adv. Appl. Mech. 18, 123176.
Lumley, J. L. 1983 Turbulence modelling. J. Appl. Mech. 50, 10971103.
Mason, P. J. 1994 Large-eddy simulation: a critical review of the technique. Q. J. R. Meteorol. Soc. 120, 126.
Mason, P. J. & Brown, A. R. 1994 The sensitivity of large-eddy simulations of turbulent shear flow to subgrid models. Boundary-Layer Meteorol. 70, 133150.
Mason, P. J. & Thomson, D. J. 1992 Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech. 242, 5178.
McBean, G. A. & Elliott, J. A. 1975 The vertical transports of kinetic energy by turbulence and pressure in the boundary layer. J. Atmos. Sci. 32, 753766.
Meneveau, C., Lund, T. S. & Cabot, W. H. 1996 A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353385.
Métais, O. & Lesieur, M. 1992 Spectral large eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239, 157194.
Miller, D. O., Tong, C. & Wyngaard, J. C. 1999 The effects of probe-induced flow distortion on velocity covariances: field observations. Boundary-Layer Meteorol. 91, 483493.
Nieuwstadt, F. T. M., Mason, P. J., Moeng, C.-H. & Schumann, U. 1991 Large-eddy simulation of the convective boundary layer: a comparison of four computer codes. In Turbulent Shear Flows 8 (ed. Durst, F., Friedrich, R., Launder, B. E., Schmidt, F. W., Schumann, U. & Whitelaw, J. H.), pp. 343367. Springer.
Nieuwstadt, F. T. M. & de Valk, P. J. P. M. M. 1987 A large eddy simulation of buoyant and non-buoyant plume dispersion in the atmospheric boundary layer. Atmos. Environ. 21, 25732587.
Nishiyama, R. T. & Bedard, A. J. 1991 A quad-disk static pressure probe for measurement in adverse atmospheres – with a comparative review of static pressure probe designs. Rev. Sci. Instrum. 62, 21932204.
Patton, E. G., Horst, T. W., Sullivan, P. P., Lenschow, D. H., Oncley, S. P., Brown, W. O. J., Burns, S. P., Guenther, A. B., Held, A., Karl, T., Mayor, S. D., Rizzo, L. V., Spuler, S. M., Sun, J., Turnipseed, A. A., Allwine, E. J., Edburg, S. L., Lamb, B. K., Avissar, R., Calhoun, R. J., Kleissl, J., Massman, W. J., Paw-U, K. T. & Weil, J. C. 2011 The canopy horizontal array turbulence study. Bull. Amer. Meteorol. Soc. 92, 593611.
Peltier, L. J., Wyngaard, J. C., Khanna, S. & Brasseur, J. 1996 Spectra in the unstable surface layer. J. Atmos. Sci. 53, 4961.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Porté-Agel, F., Parlange, M. B., Meneveau, C. & Eichinger, W. E. 2001 A priori field study of the subgrid-scale heat fluxes and dissipation in the atmospheric surface layer. J. Atmos. Sci. 58, 26732698.
Porté-Agel, F., Parlange, M. B., Meneveau, C., Eichinger, W. E. & Pahlow, M. 2000 Subgrid-scale dissipation in the atmospheric surface layer: effects of stability and filter dimension. J. Atmos. Sci. 1, 7587.
Rajagopalan, A. G. & Tong, C. 2003 Experimental investigation of scalar–scalar-dissipation filtered joint density function and its transport equation. Phys. Fluids 15, 227244.
Ramachandran, S. & Wyngaard, J. C. 2011 Subfilter-scale modelling using transport equations: large-eddy simulation of the moderately convective atmospheric boundary layer. Boundary-Layer Meteorol. 139, 135.
Rotta, J. C. 1951 Statistische theorie nichthomogener turbulenz. Z. Phys. 129, 547572.
Schumann, U. 1975 Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376404.
Shih, T.-H. & Lumley, J. L. 1985 Modelling of pressure correlation terms in Reynolds stress and scalar flux equations. Tech. Rep. FDA 85-5. Cornell University.
Smagorinsky, J. 1963 General circulation experiments with the primitive equations: I. The basic equations. Mon. Weath. Rev. 91, 99164.
Sullivan, P. P., Edson, J. B., Horst, T. W., Wyngaard, J. C. & Kelly, M. 2006 Subfilter scale fluxes in the marine surface layer: results from the ocean horizontal array turbulence study (OHATS). In 17th Symposium on Boundary Layers and Turbulence, San Diego, CA. American Meteorological Society.
Sullivan, P. P., Horst, T. W., Lenschow, D. H., Moeng, C.-H. & Weil, J. C. 2003 Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J. Fluid Mech. 482, 101139.
Tong, C. 2001 Measurements of conserved scalar filtered density function in a turbulent jet. Phys. Fluids 13, 29232937.
Tong, C., Wyngaard, J. C. & Brasseur, J. G. 1999 Experimental study of subgrid-scale stress in the atmospheric surface layer. J. Atmos. Sci. 56, 22772292.
Tong, C., Wyngaard, J. C., Khanna, S. & Brasseur, J. G. 1997 Resolvable- and subgrid-scale measurement in the atmospheric surface layer. In 12th Symposium on Boundary Layers and Turbulence, Vancouver, BC, Canada, pp. 221222. American Meteorological Society.
Tong, C., Wyngaard, J. C., Khanna, S. & Brasseur, J. G. 1998 Resolvable- and subgrid-scale measurement in the atmospheric surface layer: technique and issues. J. Atmos. Sci. 55, 31143126.
Vreman, B., Geurts, B. & Kuerten, H. 1994 On the formulation of the dynamic mixed subgrid-scale model. Phys. Fluids 6, 40574059.
Wang, D. & Tong, C. 2002 Conditionally filtered scalar dissipation, scalar diffusion, and velocity in a turbulent jet. Phys. Fluids 14, 21702185.
Wang, D., Tong, C. & Pope, S. B. 2004 Experimental study of velocity filtered joint density function and its transport equation. Phys. Fluids 16, 35993613.
Wilczak, J. M. & Bedard, A. J. 2004 A new turbulence microbarometer and its evaluation using the budget of horizontal heat flux. J. Atmos. Ocean. Tech. 21, 11701181.
Wilczak, J. M. & Businger, J. A. 1984 Large-scale eddies in the unstably stratified atmospheric surface layers. Part II: Turbulent pressure fluctuations and the budgets of heat flux, stress and turbulent kinetic energy. J. Atmos. Sci. 41, 35513567.
Wilczak, J. M., Oncley, S. P. & Stage, S. A. 2001 Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol. 99, 127150.
Wyngaard, J. C. 1971 Spatial resolution of a resistance wire temperature sensor. Phys. Fluids 14, 20522054.
Wyngaard, J. C. 1981 The effects of probe-induced flow distortion on atmospheric turbulence measurements. J. Appl. Meteorol. 20, 784794.
Wyngaard, J. C. 1992 Atmosperic turbulence. Annu. Rev. Fluid Mech. 24, 205233.
Wyngaard, J. C. 2004 Toward numerical modelling in the “terra incognita”. J. Atmos. Sci. 61, 18161826.
Wyngaard, J. C. & Coté, O. R. 1971 The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci. 28, 190201.
Wyngaard, J. C., Coté, O. R. & Izumi, Y. 1971 Local free convection, similarity, and the budgets of shear stress and heat flux. J. Atmos. Sci. 28, 11711182.
Wyngaard, J. C., Siegel, A. & Wilczak, J. M. 1994 On the response of a turbulent-pressure probe and the measurement of pressure transport. Boundary-Layer Meteorol. 69, 379396.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
UNKNOWN
Supplementary materials

Nguyen et al. supplementary material
Supplementary figures 1-7

 Unknown (6.1 MB)
6.1 MB

Measurements of the budgets of the subgrid-scale stress and temperature flux in a convective atmospheric surface layer

  • Khuong X. Nguyen (a1), Thomas W. Horst (a2), Steven P. Oncley (a2) and Chenning Tong (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed