Skip to main content Accessibility help

Mathematical modelling of a viscida network

  • C. Mavroyiakoumou (a1), I. M. Griffiths (a2) and P. D. Howell (a2)


We develop a general model to describe a network of interconnected thin viscous sheets, or viscidas, which evolve under the action of surface tension. A junction between two viscidas is analysed by considering a single viscida containing a smoothed corner, where the centreline angle changes rapidly, and then considering the limit as the smoothing tends to zero. The analysis is generalized to derive a simple model for the behaviour at a junction between an arbitrary number of viscidas, which is then coupled to the governing equation for each viscida. We thus obtain a general theory, consisting of $N$ partial differential equations and $3J$ algebraic conservation laws, for a system of $N$ viscidas connected at $J$ junctions. This approach provides a framework to understand the fabrication of microstructured optical fibres containing closely spaced holes separated by interconnected thin viscous struts. We show sample solutions for simple networks with $J=2$ and $N=2$ or 3. We also demonstrate that there is no uniquely defined junction model to describe interconnections between viscidas of different thicknesses.


Corresponding author

Email address for correspondence:


Hide All
Birks, T. A., Knight, J. C. & Russell, P. S. J. 1997 Endlessly single-mode photonic crystal fiber. Opt. Lett. 22 (13), 961963.
Buchak, P. & Crowdy, D. G. 2016 Surface-tension-driven Stokes flow: a numerical method based on conformal geometry. J. Comput. Phys. 317, 347361.
Buchak, P., Crowdy, D. G., Stokes, Y. M. & Ebendorff-Heidepriem, H. 2015 Elliptical pore regularisation of the inverse problem for microstructured optical fibre fabrication. J. Fluid Mech. 778, 538.
Buckmaster, J. D. & Nachman, A. 1978 The buckling and stretching of a viscida II. Effects of surface tension. Q. J. Mech. Appl. Maths 31 (2), 157168.
Buckmaster, J. D., Nachman, A. & Ting, L. 1975 The buckling and stretching of a viscida. J. Fluid Mech. 69 (01), 120.
Chen, M. J., Stokes, Y. M., Buchak, P., Crowdy, D. G. & Ebendorff-Heidepriem, H. 2015 Microstructured optical fibre drawing with active channel pressurisation. J. Fluid Mech. 783, 137165.
Cummings, L. J. & Howell, P. D. 1999 On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity. J. Fluid Mech. 389, 361389.
Dewynne, J. N., Howell, P. D. & Wilmott, P. 1994 Slender viscous fibres with inertia and gravity. Q. J. Mech. Appl. Maths 47 (4), 541555.
Dewynne, J. N., Ockendon, J. R. & Wilmott, P. 1989 On a mathematical model for fiber tapering. SIAM J. Appl. Maths 49 (4), 983990.
Ebendorff-Heidepriem, H. & Monro, T. M. 2007 Extrusion of complex preforms for microstructured optical fibers. Opt. Express 15 (23), 1508615092.
Ebendorff-Heidepriem, H., Moore, R. C. & Monro, T. M. 2008 Progress in the fabrication of the next-generation soft glass microstructured optical fibers. AIP Conf. Proc. 1055 (1), 9598.
Fitt, A. D., Furusawa, K., Monro, T. M., Please, C. P. & Richardson, D. J. 2002 The mathematical modelling of capillary drawing for holey fibre manufacture. J. Engng Maths 43 (2), 201227.
Griffiths, I. M.2007 Mathematical modelling of non-axisymmetric glass tube manufacture. PhD thesis, University of Oxford.
Griffiths, I. M. & Howell, P. D. 2007 The surface-tension-driven evolution of a two-dimensional annular viscous tube. J. Fluid Mech. 593, 181208.
Griffiths, I. M. & Howell, P. D. 2008 Mathematical modelling of non-axisymmetric capillary tube drawing. J. Fluid Mech. 605, 181206.
Hansen, K. P., Broeng, J., Skovgaard, P. M., Folkenberg, J. R., Nielsen, M. D., Petersson, A., Hansen, T. P., Jakobsen, C., Simonsen, H. R., Limpert, J. et al. 2005 High-power photonic crystal fiber lasers: design, handling and subassemblies. Proc. SPIE 5709, 273283.
Monro, T. M., Richardson, D. J., Broderick, N. G. R. & Bennett, P. J. 1999 Holey optical fibers: an efficient modal model. J. Lightwave Technol. 17 (6), 10931102.
Ranka, J. K., Windeler, R. S. & Stentz, A. J. 2000 Optical properties of high-delta air–silica microstructure optical fibers. Opt. Lett. 25 (11), 796798.
Russell, P.2019 TDSU 3: Glass Studio., accessed online 19 February 2019.
Senior, J. M. & Jamro, M. Y. 2009 Optical Fiber Communications: Principles and Practice. Pearson Education.
Stewart, P. S., Davis, S. H. & Hilgenfeldt, S. 2015 Microstructural effects in aqueous foam fracture. J. Fluid Mech. 785, 425461.
Stokes, Y. M., Buchak, P., Crowdy, D. G. & Ebendorff-Heidepriem, H. 2014 Drawing of micro-structured fibres: circular and non-circular tubes. J. Fluid Mech. 755, 176203.
Tronnolone, H.2016 Extensional and surface-tension-driven fluid flows in microstructured optical fibre fabrication. PhD thesis, University of Adelaide.
Wynne, R. M. 2006 A fabrication process for microstructured optical fibers. J. Lightwave Technol. 24 (11), 43044313.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed