Skip to main content Accessibility help
×
Home

Mass transfer around bubbles flowing in cylindrical microchannels

  • Javier Rivero-Rodriguez (a1) and Benoit Scheid (a1)

Abstract

This work focuses on the mass transfer around unconfined bubbles in cylindrical microchannels when they are arranged in a train. We characterise how the mass transfer, quantified by the Sherwood number, $Sh$ , is affected by the channel and bubble sizes, distance between bubbles, diffusivity, mean flow velocity, deformation of the bubble, the presence of surfactants in the limit of rigid interface and off-centred positions of the bubbles. We analyse the influence of the dimensionless numbers and especially the distance between bubbles and the Péclet number, $Pe$ , which we vary over eight decades, identifying five different mass transfer regimes. We show different concentration patterns and the dependence of the Sherwood numbers. These regimes can be classified by either the importance of the diffusion along the streamlines or the interaction between bubbles. For small $Pe$ the diffusion along the streamlines is not negligible as compared to convection, whereas for large $Pe$ convection dominates in the streamlines direction and, thus, crosswind diffusion becomes crucial in governing the mass transfer through boundary layers or the remaining wake behind the bubbles. Interaction of bubbles occurs for very small $Pe$ where the mass transfer is purely diffusive, or for very large $Pe$ where long wakes eventually reach the following bubble. We also observe that the bubble deformability mainly affects the $Sh$ in the regime for very large $Pe$ in which bubbles interaction matters, and also that the rigid interface affects the boundary layer and the remaining wake. The effect of off-centred position of the bubble, determined by the transverse force balance, is also limited to large $Pe$ . The boundary layers on rigid bubble surfaces are thicker than those on stress-free bubble surfaces, and thus the mass transfer is weaker. For centred bubbles, the influence of inertia on the mass transfer is negligible. Finally, we discuss the implication of our results on the dissolution of bubbles.

Copyright

Corresponding author

Email address for correspondence: jriveror@ulb.ac.be

References

Hide All
Abiev, R. S. 2013 Bubbles velocity, Taylor circulation rate and mass transfer model for slug flow in milli-and microchannels. Chem. Engng J. 227, 6679.
Atasi, O., Haut, B., Pedrono, A., Scheid, B. & Legendre, D. 2018 Influence of soluble surfactants and deformation on the dynamics of centered bubbles in cylindrical microchannels. Langmuir 34 (34), 1004810062.
Auguste, F. & Magnaudet, J. 2018 Path oscillations and enhanced drag of light rising spheres. J. Fluid Mech. 841, 228266.
Barak, M. & Katz, Y. 2005 Microbubbles. Chest 128 (4), 29182932.
Beltramo, P. J., Gupta, M., Alicke, A., Liascukiene, I., Gunes, D. Z., Baroud, C. N. & Vermant, J. 2017 Arresting dissolution by interfacial rheology design. Proc. Natl Acad. Sci. USA 114 (39), 1037310378.
Chi, J. J., Johnstone, T. C., Voicu, D., Mehlmann, P., Dielmann, F., Kumacheva, E. & Stephan, D. W. 2017 Quantifying the efficiency of CO2 capture by Lewis pairs. Chem. Sci. 8 (4), 32703275.
Clift, R. 1978 Bubbles, Drops and Particles. Academic Press.
Cubaud, T. & Ho, C.-M. 2004 Transport of bubbles in square microchannels. Phys. Fluids 16 (12), 45754585.
Cubaud, T., Sauzade, M. & Sun, R. 2012 Co2 dissolution in water using long serpentine microchannels. Biomicrofluidics 6 (2), 022002.
Deckwer, W.-D. 1980 On the mechanism of heat transfer in bubble column reactors. Chem. Engng Sci. 35 (6), 13411346.
Dhotre, M. T. & Joshi, J. B. 2004 Two-dimensional CFD model for the prediction of flow pattern, pressure drop and heat transfer coefficient in bubble column reactors. Chem. Engng Res. Design 82 (6), 689707.
Durgadevi, A. & Pushpavanam, S. 2018 An experimental and theoretical investigation of pure carbon dioxide absorption in aqueous sodium hydroxide in glass millichannels. J. CO2 Utilization 26, 133142.
Gallino, G., Gallaire, F., Lauga, E. & Michelin, S. 2018 Physics of bubble-propelled microrockets. Adv. Funct. Mater. 28 (25), 1800686.
Ganapathy, H., Shooshtari, A., Dessiatoun, S., Alshehhi, M. & Ohadi, M. 2014 Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor. Appl. Energy 119, 4356.
Gekle, S. 2017 Dispersion of solute released from a sphere flowing in a microchannel. J. Fluid Mech. 819, 104120.
Griffith, R. M. 1960 Mass transfer from drops and bubbles. Chem. Engng Sci. 12 (3), 198213.
Haas, U., Schmidt-Traub, H. & Brauer, H. 1972 Umströmung kugelförmiger blasen mit innerer zirkulation. Chemie Ingenieur Technik 44 (18), 10601068.
Hashemi, S. M. H., Modestino, M. A. & Psaltis, D. 2015 A membrane-less electrolyzer for hydrogen production across the pH scale. Energy Environ. Sci. 8 (7), 20032009.
Hung, L.-H., Teh, S.-Y., Jester, J. & Lee, A. P. 2010 PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches. Lab on a Chip 10 (14), 18201825.
Hyman, W. A. & Skalak, R. 1972 Viscous flow of a suspension of liquid drops in a cylindrical tube. Appl. Sci. Res. 26 (1), 2752.
Kandlikar, S., Garimella, S., Li, D., Colin, S. & King, M. R. 2005 Heat Transfer and Fluid Flow in Minichannels and Microchannels. Elsevier.
Kashid, M. N., Renken, A. & Kiwi-Minsker, L. 2011 Gas–liquid and liquid–liquid mass transfer in microstructured reactors. Chem. Engng Sci. 66 (17), 38763897.
Kuo, J. S. & Chiu, D. T. 2011 Controlling mass transport in microfluidic devices. Annu. Rev. Anal. Chem. 4, 275296.
Mehta, G., Mehta, K., Sud, D., Song, J. W., Bersano-Begey, T., Futai, N., Heo, Y. S., Mycek, M.-A., Linderman, J. J. & Takayama, S. 2007 Quantitative measurement and control of oxygen levels in microfluidic poly (dimethylsiloxane) bioreactors during cell culture. Biomed. Microdevices 9 (2), 123134.
Michelin, S., Guérin, E. & Lauga, E. 2018 Collective dissolution of microbubbles. Phys. Rev. Fluids 3 (4), 043601.
Michelin, S. & Lauga, E. 2011 Optimal feeding is optimal swimming for all Péclet numbers. Phys. Fluids 23 (10), 101901.
Mikaelian, D., Haut, B. & Scheid, B. 2015a Bubbly flow and gas–liquid mass transfer in square and circular microchannels for stress-free and rigid interfaces: CFD analysis. Microfluid Nanofluid 19 (3), 523545.
Mikaelian, D., Haut, B. & Scheid, B. 2015b Bubbly flow and gas–liquid mass transfer in square and circular microchannels for stress-free and rigid interfaces: dissolution model. Microfluid Nanofluid 19 (4), 899911.
Riechers, B., Maes, F., Akoury, E., Semin, B., Gruner, P. & Baret, J.-C. 2016 Surfactant adsorption kinetics in microfluidics. Proc. Natl Acad. Sci. USA 113 (41), 1146511470.
Rivero-Rodriguez, J., Perez-Saborid, M. & Scheid, B.2018 PDEs on deformable domains: boundary arbitrary Lagrangian–Eulerian and deformable boundary perturbation methods. J. Comput. Meth. Appl. Mech. Engng (submitted) arXiv:1810.10001.
Rivero-Rodriguez, J. & Scheid, B. 2018a Bubble dynamics in microchannels: inertial and capillary migration forces. J. Fluid Mech. 842, 215247.
Rivero-Rodriguez, J. & Scheid, B. 2018b Bubble dynamics in microchannels: inertial and capillary migration forces. J. Fluid Mech. 855, 12421245.
Rohsenow, W. M., Hartnett, J. P. & Ganic, E. N 1985 Handbook of Heat Transfer Fundamentals. p. 1440. McGraw-Hill.
Segré, G. & Silberberg, A. 1962 Behaviour of macroscopic rigid spheres in Poiseuille flow part 2. Experimental results and interpretation. J. Fluid Mech. 14 (1), 136157.
Shim, S., Wan, J., Hilgenfeldt, S., Panchal, P. D. & Stone, H. A. 2014 Dissolution without disappearing: multicomponent gas exchange for CO2 bubbles in a microfluidic channel. Lab on a Chip 14 (14), 24282436.
Squires, T. M., Messinger, R. J. & Manalis, S. R. 2008 Making it stick: convection, reaction and diffusion in surface-based biosensors. Nature Biotechnol. 26 (4), 417.
Taylor, T. D. 1963 Heat transfer from single spheres in a low Reynolds number slip flow. Phys. Fluids 6 (7), 987992.
Vadapalli, A., Goldman, D. & Popel, A. S. 2002 Calculations of oxygen transport by red blood cells and hemoglobin solutions in capillaries. Artif. Cells Blood Substitutes Biotechnol. 30 (3), 157188.
Westerwalbesloh, C., Grünberger, A., Stute, B., Weber, S., Wiechert, W., Kohlheyer, D. & von Lieres, E. 2015 Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level. Lab on a Chip 15 (21), 41774186.
Xu, J. H., Tan, J., Li, S. W. & Luo, G. S. 2008 Enhancement of mass transfer performance of liquid–liquid system by droplet flow in microchannels. Chem. Engng J. 141 (1–3), 242249.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Mass transfer around bubbles flowing in cylindrical microchannels

  • Javier Rivero-Rodriguez (a1) and Benoit Scheid (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed