Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-27T18:23:33.042Z Has data issue: false hasContentIssue false

Marangoni convection in droplets on superhydrophobic surfaces

Published online by Cambridge University Press:  10 April 2009

DANIEL TAM*
Affiliation:
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
VOLKMAR von ARNIM
Affiliation:
Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
G. H. McKINLEY
Affiliation:
Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
A. E. HOSOI
Affiliation:
Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
*
Email address for correspondence: dan_tam@math.mit.edu

Abstract

We consider a small droplet of water sitting on top of a heated superhydrophobic surface. A toroidal convection pattern develops in which fluid is observed to rise along the surface of the spherical droplet and to accelerate downwards in the interior towards the liquid/solid contact point. The internal dynamics arise due to the presence of a vertical temperature gradient; this leads to a gradient in surface tension which in turn drives fluid away from the contact point along the interface. We develop a solution to this thermocapillary-driven Marangoni flow analytically in terms of streamfunctions. Quantitative comparisons between analytical and experimental results, as well as effective heat transfer coefficients, are presented.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biance, A.-L., Clanet, C. & Quéré, D. 2003 Leidenfrost drops. Phys. Fluids 15 (6), 1632.CrossRefGoogle Scholar
Bico, J., Marzolin, C. & Quéré, D. 1999 Pearl drops. Europhys. Lett. 47, 220226.CrossRefGoogle Scholar
Cassie, A. B. D. & Baxter, S. 1944 Wettability of Porous Surfaces. Trans. Faraday Soc. 40, 546551.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon press.Google Scholar
Chang, S. T. & Velev, O. D. 2006 Evaporation-induced particle microseparations inside droplets floating on a chip. Langmuir 22, 14591468.CrossRefGoogle ScholarPubMed
Daniel, S., Chaudhury, M. K. & Chen, J. C. 2001 Fast drop movements resulting from the phase change on a gradient surface. Science 291 (5504), 633636.CrossRefGoogle ScholarPubMed
Darhuber, A. A., Chen, J. Z., Davis, J. M. & Troian, S. M. 2004 A study of mixing in thermocapillary flows on micropatterned surfaces. Phil. Trans. R. Soc. Lond. A 362, 10371058.CrossRefGoogle ScholarPubMed
Davis, S. H. 1987 Thermocapillary instabilities. Ann. Rev. Fluid Mech. 19, 403.CrossRefGoogle Scholar
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827829.CrossRefGoogle Scholar
Erb, R. A. & Thelen, E. 1965 Promoting permanent dropwise condensation. Ind. Engng Chem. 57 (10), 4952.CrossRefGoogle Scholar
Gao, L. & McCarthy, T. J. 2006 A perfectly hydrophobic surface. J. Am. Chem. Soc. 128, 90529053.CrossRefGoogle ScholarPubMed
Halliday, D., Resnick, R. & Walker, J. 2005 Fundamentals of Physics, Seventh edition. Wiley.Google Scholar
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics. Noordhoff International Publications.Google Scholar
He, B., Patankar, N. J &, Lee, J. 2003 Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 19, 49995003.CrossRefGoogle Scholar
Hu, H. & Larson, R. G. 2005 Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21, 39723980.CrossRefGoogle Scholar
Incropera, F. P. & deWitt, D. P. 2002 Fundamentals of Heat and Mass Transfer, Fifth edition. Wiley.Google Scholar
Jia, W. & Qiu, H. 2002 Fringe probing of an evaporating microdroplet on a hot surface. Intl J. Heat Mass Transfer 45, 41414150.CrossRefGoogle Scholar
Kandlikar, S. G. 2001 A theoretical model to predict pool boiling chf incorporating effects of contact angle and orientation. ASME J. Heat Transfer 123, 10711079.CrossRefGoogle Scholar
Krupenkin, T. N., Taylor, J. A., Schneider, T. M. & Yang, S. 2004 From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir 20, 38243827.CrossRefGoogle ScholarPubMed
Lafuma, A. & Quéré, D. 2003 Superhydrophobic states. Nature Mater. 2 (7), 457460.CrossRefGoogle ScholarPubMed
Lau, K. K. S., Bico, J., Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., Milne, W. I., McKinley, G. H. & Gleason, K. K. 2003 Superhydrophobic carbon nanotube forests. Nano Lett. 3 (12), 17011705.Google Scholar
Mahadevan, L. & Pomeau, Y. 1999 Rolling droplets. Phys. Fluids 11 (9), 24492453.CrossRefGoogle Scholar
Makino, K., Michiyoshi, I., Sakamoto, K. & Hojo, K. 1984 The behaviour of a water droplet on heated surfaces. Intl J. Heat. Mass Transfer 27 (5), 781791.Google Scholar
Marangoni, C. 1865 On the expansion of a drop of liquid floating on the surface of another liquid. Tipographia dei fratelli Fusi, Pavia.Google Scholar
McHale, G., Aqil, S., Shirtcliffe, N. J., Newton, M. I. & Erbil, H. Y. 2005 Analysis of droplet evaporation on a superhydrophobic surface. Langmuir 21 (24), 1105311060.CrossRefGoogle ScholarPubMed
Onda, T., Shibuichi, S., Satoh, N. & Tsujii, K. 1996 Super-water-repellent fractal surfaces. Langmuir 12, 2125.CrossRefGoogle Scholar
Otten, A. & Herminghaus, S. 2004 How plants keep dry: a physicists point of view. Langmuir 20, 24052408.Google Scholar
Qiao, Y. M. & Chandra, S. 1997 Experiments on adding surfactant to water drops boiling on a hot surface. Proc. R. Soc. Lond. A 453, 673689.CrossRefGoogle Scholar
Quéré, D. 2002 Fakir droplets (news & views). Nature Mater. 1, 1415.Google Scholar
Quéré, D. 2003 Rough ideas on wetting. Physica A 313, 3246.Google Scholar
Sadhal, S. S. & Plesset, M. S. 1979 Effect of solid properties and contact angle dropwise condensation and evaporation. J. Heat Transfer 101, 4854.CrossRefGoogle Scholar
Schatz, M. F. & Neitzel, G. P. 2001 Experiments on thermocapillary instabilities. Ann. Rev. Fluid Mech. 33, 93127.Google Scholar
Schmidt, E., Schurig, W. & Sellschopp, W. 1930 Versuche über die kondensation von wasserdampf in film- und tropfenform. Techn. Mech. u. Thermodynam. 1, 53.Google Scholar
Scriven, L. E. & Sternling, C. V. 1964 On cellular convection driven by surface-tension gradients: effects of mean surface tension and surface viscosity. J. Fluid Mech. 19, 321340.CrossRefGoogle Scholar
Subramanian, R. S. & Balasubramaniam, R. 2001 The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press.Google Scholar
Thomas, O. C., Cavicchi, R. E. & Tarlov, M. 2003 Effect of surface wettability on fast transient microboiling behavior. Langmuir 19 (15), 61686177.CrossRefGoogle Scholar
Wang, C. H. & Dhir, V. K. 1993 Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. J. Heat Transfer 115, 659669.Google Scholar
Wenzel, R. N. 1936 Resistance of solid surfaces to wetting by water. Ind. Engng Chem. 28 (8), 988994.Google Scholar
Zhai, L., Cebeci, F. C., Cohen, R. E. & Rubner, M. F. 2004 Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett. 4, 13491353.CrossRefGoogle Scholar
Zhao, N., Xu, J., Xie, Q., Weng, L., Guo, X., Zhang, X. & Shi, L. 2005 Fabrication of biomimetic superhydrophobic coating with a micro-nano-binary structure. Macromol. Rapid Commun. 26, 10751080.Google Scholar