Skip to main content Accessibility help

Marangoni convection in droplets on superhydrophobic surfaces

  • DANIEL TAM (a1), VOLKMAR von ARNIM (a2), G. H. McKINLEY (a2) and A. E. HOSOI (a2)


We consider a small droplet of water sitting on top of a heated superhydrophobic surface. A toroidal convection pattern develops in which fluid is observed to rise along the surface of the spherical droplet and to accelerate downwards in the interior towards the liquid/solid contact point. The internal dynamics arise due to the presence of a vertical temperature gradient; this leads to a gradient in surface tension which in turn drives fluid away from the contact point along the interface. We develop a solution to this thermocapillary-driven Marangoni flow analytically in terms of streamfunctions. Quantitative comparisons between analytical and experimental results, as well as effective heat transfer coefficients, are presented.


Corresponding author

Email address for correspondence:


Hide All
Biance, A.-L., Clanet, C. & Quéré, D. 2003 Leidenfrost drops. Phys. Fluids 15 (6), 1632.
Bico, J., Marzolin, C. & Quéré, D. 1999 Pearl drops. Europhys. Lett. 47, 220226.
Cassie, A. B. D. & Baxter, S. 1944 Wettability of Porous Surfaces. Trans. Faraday Soc. 40, 546551.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon press.
Chang, S. T. & Velev, O. D. 2006 Evaporation-induced particle microseparations inside droplets floating on a chip. Langmuir 22, 14591468.
Daniel, S., Chaudhury, M. K. & Chen, J. C. 2001 Fast drop movements resulting from the phase change on a gradient surface. Science 291 (5504), 633636.
Darhuber, A. A., Chen, J. Z., Davis, J. M. & Troian, S. M. 2004 A study of mixing in thermocapillary flows on micropatterned surfaces. Phil. Trans. R. Soc. Lond. A 362, 10371058.
Davis, S. H. 1987 Thermocapillary instabilities. Ann. Rev. Fluid Mech. 19, 403.
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827829.
Erb, R. A. & Thelen, E. 1965 Promoting permanent dropwise condensation. Ind. Engng Chem. 57 (10), 4952.
Gao, L. & McCarthy, T. J. 2006 A perfectly hydrophobic surface. J. Am. Chem. Soc. 128, 90529053.
Halliday, D., Resnick, R. & Walker, J. 2005 Fundamentals of Physics, Seventh edition. Wiley.
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics. Noordhoff International Publications.
He, B., Patankar, N. J &, Lee, J. 2003 Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 19, 49995003.
Hu, H. & Larson, R. G. 2005 Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21, 39723980.
Incropera, F. P. & deWitt, D. P. 2002 Fundamentals of Heat and Mass Transfer, Fifth edition. Wiley.
Jia, W. & Qiu, H. 2002 Fringe probing of an evaporating microdroplet on a hot surface. Intl J. Heat Mass Transfer 45, 41414150.
Kandlikar, S. G. 2001 A theoretical model to predict pool boiling chf incorporating effects of contact angle and orientation. ASME J. Heat Transfer 123, 10711079.
Krupenkin, T. N., Taylor, J. A., Schneider, T. M. & Yang, S. 2004 From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir 20, 38243827.
Lafuma, A. & Quéré, D. 2003 Superhydrophobic states. Nature Mater. 2 (7), 457460.
Lau, K. K. S., Bico, J., Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., Milne, W. I., McKinley, G. H. & Gleason, K. K. 2003 Superhydrophobic carbon nanotube forests. Nano Lett. 3 (12), 17011705.
Mahadevan, L. & Pomeau, Y. 1999 Rolling droplets. Phys. Fluids 11 (9), 24492453.
Makino, K., Michiyoshi, I., Sakamoto, K. & Hojo, K. 1984 The behaviour of a water droplet on heated surfaces. Intl J. Heat. Mass Transfer 27 (5), 781791.
Marangoni, C. 1865 On the expansion of a drop of liquid floating on the surface of another liquid. Tipographia dei fratelli Fusi, Pavia.
McHale, G., Aqil, S., Shirtcliffe, N. J., Newton, M. I. & Erbil, H. Y. 2005 Analysis of droplet evaporation on a superhydrophobic surface. Langmuir 21 (24), 1105311060.
Onda, T., Shibuichi, S., Satoh, N. & Tsujii, K. 1996 Super-water-repellent fractal surfaces. Langmuir 12, 2125.
Otten, A. & Herminghaus, S. 2004 How plants keep dry: a physicists point of view. Langmuir 20, 24052408.
Qiao, Y. M. & Chandra, S. 1997 Experiments on adding surfactant to water drops boiling on a hot surface. Proc. R. Soc. Lond. A 453, 673689.
Quéré, D. 2002 Fakir droplets (news & views). Nature Mater. 1, 1415.
Quéré, D. 2003 Rough ideas on wetting. Physica A 313, 3246.
Sadhal, S. S. & Plesset, M. S. 1979 Effect of solid properties and contact angle dropwise condensation and evaporation. J. Heat Transfer 101, 4854.
Schatz, M. F. & Neitzel, G. P. 2001 Experiments on thermocapillary instabilities. Ann. Rev. Fluid Mech. 33, 93127.
Schmidt, E., Schurig, W. & Sellschopp, W. 1930 Versuche über die kondensation von wasserdampf in film- und tropfenform. Techn. Mech. u. Thermodynam. 1, 53.
Scriven, L. E. & Sternling, C. V. 1964 On cellular convection driven by surface-tension gradients: effects of mean surface tension and surface viscosity. J. Fluid Mech. 19, 321340.
Subramanian, R. S. & Balasubramaniam, R. 2001 The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press.
Thomas, O. C., Cavicchi, R. E. & Tarlov, M. 2003 Effect of surface wettability on fast transient microboiling behavior. Langmuir 19 (15), 61686177.
Wang, C. H. & Dhir, V. K. 1993 Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. J. Heat Transfer 115, 659669.
Wenzel, R. N. 1936 Resistance of solid surfaces to wetting by water. Ind. Engng Chem. 28 (8), 988994.
Zhai, L., Cebeci, F. C., Cohen, R. E. & Rubner, M. F. 2004 Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett. 4, 13491353.
Zhao, N., Xu, J., Xie, Q., Weng, L., Guo, X., Zhang, X. & Shi, L. 2005 Fabrication of biomimetic superhydrophobic coating with a micro-nano-binary structure. Macromol. Rapid Commun. 26, 10751080.
MathJax is a JavaScript display engine for mathematics. For more information see

Marangoni convection in droplets on superhydrophobic surfaces

  • DANIEL TAM (a1), VOLKMAR von ARNIM (a2), G. H. McKINLEY (a2) and A. E. HOSOI (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed