Skip to main content Accessibility help

Macro-size drop encapsulation

  • A. Maleki (a1), S. Hormozi (a2), A. Roustaei (a1) and I. A. Frigaard (a1) (a3)


Viscoplastic fluids do not flow unless they are sufficiently stressed. This property can be exploited in order to produce novel flow features. One example of such flows is viscoplastically lubricated (VPL) flow, in which a viscoplastic fluid is used to stabilize the interface in a multi-layer flow, far beyond what might be expected for a typical viscous–viscous interface. Here we extend this idea by considering the encapsulation of droplets within a viscoplastic fluid, for the purpose of transportation, e.g. in pipelines. The main advantage of this method, compared to others that involve capillary forces is that significantly larger droplets may be stably encapsulated, governed by the length scale of the flow and yield stress of the encapsulating fluid. We explore this set-up both analytically and computationally. We show that sufficiently small droplets are held in the unyielded plug of a Poiseuille flow (pipe or plane channel). As the length or radius of the droplets increases, the carrier fluid eventually yields, potentially breaking the encapsulation. We study this process of breaking and give estimates for the limiting size of droplets that can be encapsulated.


Corresponding author

Email address for correspondence:


Hide All
Balmforth, N. J. & Craster, R. 1999 A consistent thin-layer theory for Bingham plastics. J. Non-Newtonian Fluid Mech. 84, 6581.
Balmforth, N. J., Frigaard, I. A. & Overlaz, G. 2014 Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech. 46, 121146.
Barnes, H. A. 1999 The yield stress – a review or ‘ ${\it\pi}{\it\alpha}{\it\nu}{\it\tau}{\it\alpha}{\it\rho}{\it\epsilon}{\it\iota}$ ’ – everything flows? J. Non-Newtonian Fluid Mech. 81, 133178.
Beaulne, M. & Mitsoulis, E. 1997 Creeping motion of a sphere in tubes filled with Herschel–Bulkley fluids. J. Non-Newtonian Fluid Mech. 72, 5571.
Bercovier, M. & Engleman, M. 1980 A finite-element method for incompressible non-Newtonian flows. J. Comput. Phys. 36, 313326.
Beris, A. N., Tsamopoulos, J. A. & Armstrong, R. C. 1985 Creeping motion of a sphere through a Bingham plastic. J. Fluid Mech. 158, 219244.
Blackery, J. & Mitsoulis, E. 1997 Creeping motion of a sphere in tubes filled with a Bingham plastic material. J. Non-Newtonian Fluid Mech. 70, 5977.
Boujlel, J. & Coussot, P. 2013 Measuring the surface tension of yield stress fluids. Soft Matt. 9, 58985908.
Chateau, X., Ovarlez, G. & Trung, K. L. 2008 Homogenization approach to the behavior of suspensions of non-colloidal particles in yield stress fluids. J. Rheol. 52, 489506.
Cohen, I., Li, H., Hougland, J. L., Mrksich, M. & Nagel, S. R. 2001 Using selective withdrawal to coat microparticles. Science 292, 265267.
Coussot, P. 2005 Rheology of Pastes, Suspensions and Granular Materials. Wiley.
Coussot, P. 2014 Yield stress fluid flows: a review of experimental data. J. Non-Newtonian Fluid Mech. 211, 3149.
Coussot, P., Tocquer, L., Lanos, C. & Ovarlez, G. 2009 Macroscopic vs. local rheology of yield stress fluids. J. Non-Newtonian Fluid Mech. 158, 8590.
De Besses, B. D., Magnin, A. & Jay, P. 2003 Viscoplastic flow around a cylinder in an infinite medium. J. Non-Newtonian Fluid Mech. 115, 2749.
Dimakopoulos, Y., Pavlidis, M. & Tsamopoulos, J. 2013 Steady bubble rise in Herschel–Bulkley fluids and comparison of predictions via the augmented Lagrangian method with those via the Papanastasiou model. J. Non-Newtonian Fluid Mech. 200, 3451.
Dubash, N. & Frigaard, I. A. 2004 Conditions for static bubbles in viscoplastic fluids. Phys. Fluids 16, 43194330.
Dubash, N. & Frigaard, I. A. 2005 Propagation and stopping of air bubbles in Carbopol solutions. J. Non-Newtonian Fluid Mech. 142, 123134.
Fortin, M. & Glowinski, R. 1983 Augmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problems. Elsevier.
Frigaard, I. A. 2001 Super-stable parallel flows of multiple visco-plastic fluids. J. Non-Newtonian Fluid Mech. 100, 4976.
Frigaard, I. A. & Nouar, C. 2005 On the usage of viscosity regularisation methods for visco-plastic fluid flow computation. J. Non-Newtonian Fluid Mech. 127, 126.
Frigaard, I. A. & Ryan, D. P. 2004 Flow of a visco-plastic fluid in a channel of slowly varying width. J. Non-Newtonian Fluid Mech. 123, 6783.
Ganan-Calvo, A. M. 1998 Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 80, 285288.
Glowinski, R. 1984 Numerical Methods for Nonlinear Variational Problems. Springer.
Glowinski, R. & Wachs, A.2011 Handbook of Numerical Analysis: on the Numerical Simulation of Viscoplastic Fluid Flow.
Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V. & Langer, R. 1994 Biodegradable long-circulating polymeric nanospheres. Science 263, 16001603.
Hillery, A. M., Lloyd, A. W. & Swarbrick, J. 2001 Drug Delivery and Targeting for Pharmacists and Pharmaceutical Scientists. Taylor & Francis.
Holenberg, Y., Lavrenteva, O. M., Liberzon, A., Shavit, U. & Nir, A. 2013 PTV and PIV study of the motion of viscous drops in yield stress material. J. Non-Newtonian Fluid Mech. 193, 129143.
Hormozi, S., Dunbrack, G. & Frigaard, I. A. 2014 Visco-plastic sculpting. Phys. Fluids 26, 093101.
Hormozi, S. & Frigaard, I. A. 2012 Nonlinear stability of a visco-plastically lubricated viscoelastic fluid flow. J. Non-Newtonian Fluid Mech. 169, 6173.
Hormozi, S., Martinez, D. M. & Frigaard, I. A. 2011a Stable core-annular flows of viscoelastic fluids using the visco-plastic lubrication technique. J. Non-Newtonian Fluid Mech. 166, 13561368.
Hormozi, S., Wielage-Burchard, K. & Frigaard, I. A. 2011b Multi-layer channel flows with yield stress fluids. J. Non-Newtonian Fluid Mech. 166, 262278.
Hormozi, S., Wielage-Burchard, K. & Frigaard, I. A. 2011c Entry, start up and stability effects in visco-plastically lubricated pipe flows. J. Fluid Mech. 673, 432467.
Huen, C. K., Frigaard, I. A. & Martinez, D. M. 2007 Experimental studies of multi-layer flows using a visco-plastic lubricant. J. Non-Newtonian Fluid Mech. 142, 150161.
Jaworek, A. 2008 Electrostatic micro and nanoencapsulation and electroemulsification: a brief review. J. Microencapsul. 25, 443468.
Lavrenteva, O. M., Holenberg, Y. & Nir, A. 2009 Motion of viscous drops in tubes filled with yield stress fluid. Chem. Engng Sci. 64, 47724786.
Lipscomb, G. G. & Denn, M. 1984 Flow of Bingham fluids in complex geometries. J. Non-Newtonian Fluid Mech. 14, 337346.
Lister, J. R. 1989 Selective withdrawal from a viscous 2-layer system. J. Fluid Mech. 198, 231254.
Liu, B. T., Muller, S. J. & Denn, M. M. 2002 Convergence of a regularization method for creeping flow of a Bingham material about a rigid sphere. J. Non-Newtonian Fluid Mech. 102, 179191.
Liu, B. T., Muller, S. J. & Denn, M. M. 2003 Interactions of two rigid spheres translating collinearly in creeping flow in a Bingham material. J. Non-Newtonian Fluid Mech. 113, 4967.
Loscertales, I. G., Barrero, A., Guerrero, I., Cortijo, R., Marquez, M. & Ganan-Calvo, A. M. 2002 Micro/nano encapsutation via electrified coaxial liquid jets. Science 295, 16951698.
Mahaut, F., Chateau, X., Coussot, P. & Ovarlez, G. 2008 Yield stress and elastic modulus of suspensions of non-colloidal particles in yield stress fluids. J. Rheol. 52, 287313.
Merkak, O., Jossic, L. & Magnin, A. 2008 Dynamics of particles suspended in a yield stress fluid flowing in a pipe. AIChE J. 54, 11291138.
Merkak, O., Jossic, L. & Magnin, A. 2009 Migration and sedimentation of spherical particles in a yield stress fluid flowing in a horizontal cylindrical pipe. AIChE J. 55, 25152525.
Mitsoulis, E. 2004 On creeping drag flow of a viscoplastic fluid past a circular cylinder: wall effects. Chem. Engng Sci. 59, 789800.
Moller, P. C. F., Fall, A. & Bonn, D. 2009 Origin of apparent viscosity in yield stress fluids below yielding. Europhys. Lett. 87, 38004.
Moyers-Gonzalez, M. A., Frigaard, I. A. & Nouar, C. 2004 Nonlinear stability of a visco-plastically lubricated viscous shear flow. J. Fluid Mech. 506, 117146.
Moyers-Gonzalez, M. A., Frigaard, I. A. & Nouar, C. 2010 Stable two-layer flows at all $\mathit{Re}$ ; visco-plastic lubrication of shear-thinning and viscoelastic fluids. J. Non-Newtonian Fluid Mech. 165, 15781587.
Ovarlez, G., Bertrand, F., Coussot, P. & Chateau, X. 2012 Shear-induced sedimentation in yield stress fluids. J. Non-Newtonian Fluid Mech. 177, 1928.
Ovarlez, G., Bertrand, F. & Rodts, S. 2006 Local determination of the constitutive law of a dense suspension of non-colloidal particles through magnetic resonance imaging. J. Rheol. 50, 259292.
Papanastasiou, T. C. 1987 Flows of materials with yield. J. Rheol. 31, 385404.
Potapov, A., Spivak, R., Lavrenteva, O. M. & Nir, A. 2006 Motion and deformation of drops in Bingham fluid. Ind. Engng Chem. Res. 45, 69856995.
Putz, A., Burghelea, T. I., Frigaard, I. A. & Martinez, D. M. 2008 Settling of an isolated spherical particle in a yield stress shear thinning fluid. Phys. Fluids 20, 033102.
Putz, A. & Frigaard, I. A. 2010 Creeping flow around particles in a Bingham fluid. J. Non-Newtonian Fluid Mech. 165, 263280.
Putz, A., Frigaard, I. A. & Martinez, D. M. 2009 On the lubrication paradox and the use of regularisation methods for lubrication flows. J. Non-Newtonian Fluid Mech. 163, 6277.
Roquet, N. & Saramito, P. 2003 An adaptive finite element method for Bingham fluid flows around a cylinder. Comput. Meth. Appl. Mech. Engng 192, 33173341.
Roquet, N. & Saramito, P. 2008 An adaptive finite element method for viscoplastic flows in a square pipe with stick-slip at the wall. J. Non-Newtonian Fluid Mech. 155, 101115.
Roustaei, A. & Frigaard, I. A. 2013 The occurrence of fouling layers in the flow of a yield stress fluid along a wavy-walled channel. J. Non-Newtonian Fluid Mech. 198, 109124.
Roustaei, A., Gosselin, A. & Frigaard, I. A. 2014 Residual drilling mud during conditioning of uneven boreholes in primary cementing: rhelogy and geometry effects. J. Non-Newtonian Fluid Mech. doi:10.1016/j.jnnfm.2014.09.019.
Singh, J. P. & Denn, M. M. 2008 Interacting two-dimensional bubbles and droplets in a yield-stress fluid. Phys. Fluids 20, 040901.
Tokpavi, D. L., Magnin, A. & Jay, P. 2008 Very slow flow of Bingham viscoplastic fluid around a circular cylinder. J. Non-Newtonian Fluid Mech. 154, 6576.
Tsamopoulos, J., Dimakopoulos, Y., Chatzidai, N., Karapetsas, G. & Pavlidis, M. 2008 Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment. J. Fluid Mech. 601, 123164.
Vu, T., Ovarlez, G. & Chateau, X. 2010 Macroscopic behavior of bidisperse suspensions of non-colloidal particles in yield stress fluids. J. Rheol. 54, 815833.
Walton, I. C. & Bittleston, S. H. 1998 The axial-flow of a Bingham plastic in a narrow eccentric annulus. J. Non-Newtonian Fluid Mech. 222, 3960.
Windbergs, M., Zhao, Y., Heyman, J. & Weitz, D. A. 2013 Biodegradable core–shell carriers for simultaneous encapsulation of synergistic actives. J. Am. Chem. Soc. 135, 79337937.
Zhao, Y., Shum, H. C., Adams, L. A., Sun, B., Holtze, C., Gu, Z. & Weitz, D. A. 2011 Enhanced encapsulation of actives in self-sealing microcapsules by precipitation in capsule shells. Langmuir 27, 1398813991.
Zuidam, N. J. & Nedovic, V. A. 2010 Encapsulation Technologies for Active Food Ingredients and Food Processing. Springer.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed