Skip to main content Accessibility help

Long frontal waves and dynamic scaling in freely evolving equivalent barotropic flow

  • B. H. Burgess (a1) and D. G. Dritschel (a1)


We present a scaling theory that links the frequency of long frontal waves to the kinetic energy decay rate and inverse transfer of potential energy in freely evolving equivalent barotropic turbulence. The flow energy is predominantly potential, and the streamfunction makes the dominant contribution to potential vorticity (PV) over most of the domain, except near PV fronts of width $O(L_{D})$ , where $L_{D}$ is the Rossby deformation length. These fronts bound large vortices within which PV is well-mixed and arranged into a staircase structure. The jets collocated with the fronts support long-wave undulations, which facilitate collisions and mergers between the mixed regions, implicating the frontal dynamics in the growth of potential-energy-containing flow features. Assuming the mixed regions grow self-similarly in time and using the dispersion relation for long frontal waves (Nycander et al., Phys. Fluids A, vol. 5, 1993, pp. 1089–1091) we predict that the total frontal length and kinetic energy decay like $t^{-1/3}$ , while the length scale of the staircase vortices grows like $t^{1/3}$ . High-resolution simulations confirm our predictions.


Corresponding author

Email address for correspondence:


Hide All
Arbic, B. K. & Flierl, G. R. 2003 Coherent vortices and kinetic energy ribbons in asymptotic, quasi two-dimensional f-plane turbulence. Phys. Fluids 15, 21772189.
Boffetta, G., De Lillo, F. & Musacchio, S. 2002 Inverse cascade in Charney–Hasegawa–Mima turbulence. Europhys. Lett. 59, 687693.
Burgess, B. H., Dritschel, D. G. & Scott, R. K. 2017 Extended scale invariance in the vortices of freely evolving two-dimensional turbulence. Phys. Rev. Fluids 2, 114702.
Dritschel, D. G. & Fontane, J. 2010 The combined Lagrangian advection method. J. Comput. Phys. 229, 54085417.
Dritschel, D. G. & McIntyre, M. E. 2008 Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855874.
Dritschel, D. G. & Scott, R. K. 2011 Jet sharpening by turbulent mixing. Phil. Trans. R. Soc. Lond. 369, 754770.
Dritschel, D. G., Scott, R. K., Macaskill, C., Gottwald, G. A. & Tran, C. V. 2008 Unifying scaling theory for vortex dynamics in two-dimensional turbulence. Phys. Rev. Lett. 101, 094501.
Dunkerton, T. J. & Scott, R. K. 2008 A barotropic model of the angular momentum-conserving potential vorticity staircase in spherical geometry. J. Atmos. Sci. 65, 11051136.
Hasegawa, A. & Mima, K. 1978 Pseudo-three-dimensional turbulence in a magnetized nonuniform plasma. Phys. Fluids 21, 8792.
Iwayama, T., Shepherd, T. G. & Watanabe, T. 2002 An ‘ideal’ form of decaying two-dimensional turbulence. J. Fluid Mech. 456, 183198.
Larichev, V. D. & McWilliams, J. C. 1991 Weakly decaying turbulence in an equivalent barotropic fluid. Phys. Fluids A 3, 938950.
McIntyre, M. E. 1982 How well do we understand the dynamics of stratospheric warmings? J. Met. Soc. Japan 60, 3765.
Nycander, J., Dritschel, D. G. & Sutyrin, G. G. 1993 The dynamics of long frontal waves in the shallow-water equations. Phys. Fluids A 5, 10891091.
Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.
Płotka, H. & Dritschel, D. G. 2012 Quasi-geostrophic shallow-water vortex-patch equilibria and their stability. Geophys. Astrophys. Fluid Dyn. 106, 574595.
Scott, R. K. & Dritschel, D. G. 2018 Zonal jet formation by potential vorticity mixing at large and small scales. In Zonal Jets (ed. Galperin, B. & Read, P. L.), Cambridge University Press.
Tran, C. V. & Dritschel, D. G. 2006 Impeded inverse energy transfer in the Charney–Hasegawa–Mima model of quasi-geostrophic flows. J. Fluid Mech. 551, 435443.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification

Type Description Title

Burgess and Dritschel supplementary movie 1
Kinetic energy density field at times $t = 110 \ 000 - 190 \ 000$.

 Video (9.3 MB)
9.3 MB

Burgess and Dritschel supplementary movie 2
Potential vorticity field at times $t = 110 \ 000 - 190 \ 000$.

 Video (2.1 MB)
2.1 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed