Skip to main content Accessibility help

Local and global pairing instabilities of two interlaced helical vortices

  • Hugo Umberto Quaranta (a1) (a2), Mattias Brynjell-Rahkola (a3), Thomas Leweke (a1) and Dan S. Henningson (a3)


We investigate theoretically and experimentally the stability of two interlaced helical vortices with respect to displacement perturbations having wavelengths that are large compared to the size of the vortex cores. First, existing theoretical results are recalled and applied to the present configuration. Various modes of unstable perturbations, involving different phase relationships between the two vortices, are identified and their growth rates are calculated. They lead to a local pairing of neighbouring helix loops, or to a global pairing with one helix expanding and the other one contracting. A relation is established between this instability and the three-dimensional pairing of arrays of straight parallel vortices, and a striking quantitative agreement concerning the growth rates and frequencies is found. This shows that the local pairing of vortices is the driving mechanism behind the instability of the helix system. Second, an experimental study designed to observe these instabilities in a real flow is presented. Two helical vortices are generated by a two-bladed rotor in a water channel and characterised through dye visualisations and particle image velocimetry measurements. Unstable displacement modes are triggered individually, either by varying the rotation frequency of the rotor, or by imposing a small rotor eccentricity. The observed unstable mode structure, and the corresponding growth rates obtained from advanced processing of visualisation sequences, are in good agreement with theoretical predictions. The nonlinear late stages of the instability are also documented experimentally. Whereas local pairing leads to strong deformations and subsequent breakup of the vortices, global pairing results in a leapfrogging phenomenon, which temporarily restores the initial double-helix geometry, in agreement with recent observations from numerical simulations.


Corresponding author

Email address for correspondence:


Hide All
Alfredsson, P. H. & Dahlberg, J. A.1979 A preliminary wind tunnel study of windmill wake dispersion in various flow conditions. Tech. Rep. AU-1499. FFA, Stockholm, Sweden.
Batchelor, G. K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20, 645658.10.1017/S0022112064001446
Bolnot, H.2012 Instabilités des tourbillons hélicoïdaux: application au sillage des rotors. PhD thesis, Aix-Marseille Université, Marseille, France.
Brown, D.2017 Tracker – video analysis and modeling tool.
Cheng, M., Lou, J. & Lim, T. T. 2015 Leapfrogging of multiple coaxial viscous vortex rings. Phys. Fluids 27, 031702.10.1063/1.4915890
Crow, S. C. 1970 Stability theory of a pair of trailing vortices. AAIA J. 8, 21722179.10.2514/3.6083
Fabre, D.2002 Instabilités et instationarités dans les tourbillons: application au sillages des avions. PhD thesis, Université Pierre et Marie Curie–Paris VI, Paris, France.
Felli, M., Camussi, R. & Di Felice, F. 2011 Mechanisms of evolution of the propeller wake in the transition and far fields. J. Fluid Mech. 682, 553.10.1017/jfm.2011.150
Gupta, B. P. & Loewy, R. G. 1974 Theoretical analysis of the aerodynamics stability of multiple, interdigitated helical vortices. AIAA J. 12, 13811387.10.2514/3.49493
Hardin, J. C. 1982 The velocity field induced by a helical vortex filament. Phys. Fluids 25, 19491952.10.1063/1.863684
Ivanell, S., Mikkelsen, R., Sørensen, J. N. & Henningson, D. 2010 Stability analysis of the tip vortices of a wind turbine. Wind Energy 13, 705715.10.1002/we.391
Kawada, S. 1936 Induced velocity by helical vortices. J. Aeronaut. Sci. 3, 8687.10.2514/8.141
Lamb, H. 1932 Hydrodynamics, § 156. Cambridge University Press.
Leishman, J. G. 2006 Principles of Helicopter Aerodynamics. Cambridge University Press.
Leishman, J. G., Bhagwat, M. J. & Ananthan, S. 2004 The vortex ring state as a spatially and temporally developing wake instability. J. Am. Helicopter Soc. 49, 160175.10.4050/JAHS.49.160
Leweke, T., Le Dizès, S. & Williamson, C. H. K. 2016 Dynamics and instabilities of vortex pairs. Annu. Rev. Fluid Mech. 48, 507541.10.1146/annurev-fluid-122414-034558
Leweke, T., Quaranta, H. U., Bolnot, H., Blanco-Rodríguez, F. J. & Le Dizès, S. 2014 Long- and short-wave instabilities in helical vortices. J. Phys.: Conf. Ser. 524, 012154.
Meliga, P., Gallaire, F. & Chomaz, J.-M. 2012 A weakly nonlinear mechanism for mode selection in swirling jets. J. Fluid Mech. 699, 216262.10.1017/jfm.2012.93
Moore, D. W. 1972 Finite amplitude waves on aircraft trailing vortices. Aeronaut. Q. 23, 307314.
Moore, D. W. & Saffman, P. G. 1973 Axial flow in laminar trailing vortices. Proc. R. Soc. Lond. A 333, 491508.10.1098/rspa.1973.0075
Nemes, A., Lo Jacono, D., Blackburn, H. M. & Sheridan, J. 2015 Mutual inductance of two helical vortices. J. Fluid Mech. 774, 298310.10.1017/jfm.2015.288
Okulov, V. L. 2004 On the stability of multiple helical vortices. J. Fluid Mech. 521, 319342.10.1017/S0022112004001934
Okulov, V. L. & Sørensen, J. N. 2010 Applications of 2D helical vortex dynamics. Theor. Comput. Fluid Dyn. 24, 395401.10.1007/s00162-009-0136-3
Phillips, W. R. C. 1981 The turbulent trailing vortex during roll-up. J. Fluid Mech. 105, 451467.10.1017/S0022112081003285
Quaranta, H. U., Bolnot, H. & Leweke, T. 2015 Long-wave instability of a helical vortex. J. Fluid Mech. 780, 687716.10.1017/jfm.2015.479
Robinson, A. C. & Saffman, P. G. 1982 Three-dimensional stability of vortex arrays. J. Fluid Mech. 125, 411427.10.1017/S0022112082003413
Rosenhead, L. 1930 The spread of vorticity in the wake behind a cylinder. Proc. R. Soc. Lond. A 127, 590612.10.1098/rspa.1930.0078
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.
Sarmast, S., Dadfar, R., Mikkelsen, R. F., Schlatter, P., Ivanell, S., Sørensen, J. N. & Henningson, D. S. 2014 Mutual inductance instability of the tip vortices behind a wind turbine. J. Fluid Mech. 755, 705731.10.1017/jfm.2014.326
Selçuk, C., Delbende, I. & Rossi, M. 2018 Helical vortices: linear stability analysis and nonlinear dynamics. Fluid Dyn. Res. 50, 011411.10.1088/1873-7005/aa73e3
Selçuk, S. C.2016 Numerical study of helical vortices and their instabilities. PhD thesis, Université Pierre et Marie Curie, Paris, France.
Selig, M. S., Guglielmo, J. J., Broeren, A. P. & Giguere, P. 1995 Summary of Low-Speed Airfoil Data. SoarTech.
Sørensen, J. N. 2011 Instability of helical tip vortices in rotor wakes. J. Fluid Mech. 682, 14.10.1017/jfm.2011.277
Sørensen, J. N. & Shen, W. Z. 2002 Numerical modeling of wind turbine wakes. Trans. ASME J. Fluids Engng 124, 393399.10.1115/1.1471361
Vermeer, L. J., Sørensen, J. N. & Crespo, A. 2003 Wind turbine wake aerodynamics. Prog. Aerosp. Sci. 39, 467510.10.1016/S0376-0421(03)00078-2
Widnall, S. E. 1972 The stability of a helical vortex filament. J. Fluid Mech. 54, 641663.10.1017/S0022112072000928
Widnall, S. E., Bliss, D. B. & Zalay, A. 1971 Theoretical and experimental study of the instability of a vortex pair. In Aircraft Wake Turbulence and its Detection (ed. Olsen, J. H., Goldberg, A. & Rogers, M.), pp. 305338. Plenum.10.1007/978-1-4684-8346-8_19
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Local and global pairing instabilities of two interlaced helical vortices

  • Hugo Umberto Quaranta (a1) (a2), Mattias Brynjell-Rahkola (a3), Thomas Leweke (a1) and Dan S. Henningson (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed