Skip to main content Accessibility help

Linear stability of boundary layers under solitary waves

  • Joris C. G. Verschaeve (a1) (a2) and Geir K. Pedersen (a2)


In the present treatise, the stability of the boundary layer under solitary waves is analysed by means of the parabolized stability equation. We investigate both surface solitary waves and internal solitary waves. The main result is that the stability of the flow is not of parametric nature as has been assumed in the literature so far. Not only does linear stability analysis highlight this misunderstanding, it also gives an explanation why Sumer et al. (J. Fluid Mech., vol. 646, 2010, pp. 207–231), Vittori & Blondeaux (Coastal Engng, vol. 58, 2011, pp. 206–213) and Ozdemir et al. (J. Fluid Mech., vol. 731, 2013, pp. 545–578) each obtained different critical Reynolds numbers in their experiments and simulations. We find that linear instability is possible in the acceleration region of the flow, leading to the question of how this relates to the observation of transition in the acceleration region in the experiments by Sumer et al. or to the conjecture of a nonlinear instability mechanism in this region by Ozdemir et al. The key concept for assessment of instabilities is the integrated amplification which has not been employed for this kind of flow before. In addition, the present analysis is not based on a uniformization of the flow but instead uses a fully nonlinear description including non-parallel effects, weakly or fully. This allows for an analysis of the sensitivity with respect to these effects. Thanks to this thorough analysis, quantitative agreement between model results and direct numerical simulation has been obtained for the problem in question. The use of a high-order accurate Navier–Stokes solver is primordial in order to obtain agreement for the accumulated amplifications of the Tollmien–Schlichting waves as revealed in this analysis. An elaborate discussion on the effects of amplitudes and water depths on the stability of the flow is presented.


Corresponding author

Email address for correspondence:


Hide All
Aghsaee, P., Boegman, L., Diamessis, P. J. & Lamb, K. G. 2012 Boundary-layer-separation-driven vortex shedding beneath internal solitary waves of depression. J. Fluid Mech. 690, 321344.
Baines, P. G., Mujumdar, S. J. & Mitsudera, H. 1996 The mechanics of the Tollmien–Schlichting wave. J. Fluid Mech. 312, 107124.
Benjamin, T. B. 1966 Internal waves of finite amplitude and permanent form. J. Fluid Mech. 25, 241270.
Bertolotti, F., Herbert, T. & Spalart, P. 1992 Linear and nonlinear stability of the Blasius boundary layer. J. Fluid Mech. 242, 441474.
Blondeaux, P., Pralits, J. & Vittori, G. 2012 Transition to turbulence at the bottom of a solitary wave. J. Fluid Mech. 709, 396407.
Carr, M. & Davies, P. A. 2006 The motion of an internal solitary wave of depression over a fixed bottom boundary in a shallow, two-layer fluid. Phys. Fluids 18, 016601.
Carr, M. & Davies, P. A. 2010 Boundary layer flow beneath an internal solitary wave of elevation. Phys. Fluids 22, 026601.
Carr, M., Davies, P. A. & Shivaram, P. 2008 Experimental evidence of internal solitary wave-induced global instability in shallow water benthic boundary layers. Phys. Fluids 20, 066603.
Cossu, C. & Brandt, L. 2002 Stabilization of Tollmien–Schlichting waves by finite amplitude optimal streaks in the blasius boundary layer. Phys. Fluids 14, L57L60.
Diamessis, P. J. & Redekopp, L. G. 2006 Numerical investigation of solitary internal wave-induced global instability in shallow water benthic boundary layers. J. Phys. Oceanogr. 36, 784811.
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
Fasel, H. 1976 Investigation of the stability of boundary layers by a finite-difference model of the Navier–Stokes equations. J. Fluid Mech. 78, 355383.
Fasel, H. F. 2002 Numerical investigation of the interation of the klebanoff-mode with a Tollmien–Schlichting wave. J. Fluid Mech. 450, 133.
Fenton, J. 1972 A ninth-order solution for the solitary wave. J. Fluid Mech. 53, 257271.
Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 Nek5000 Web page
Funakoshi, M. & Oikawa, M. 1986 Long internal waves of large amplitude in a two-layer fluid. J. Phys. Soc. Japan 55, 128144.
Grimshaw, R. 1971 The solitary wave in water of variable depth. Part 2. J. Fluid Mech. 46, 611622.
Herbert, T.1984 Analysis of the subharmonic route to transition in boundary layers, AAIA 22nd Aerospace Sciences Meeting. AIAA Paper 84-0009.
Herbert, T. 1988 Secondary instability of boundary layers. Ann. Rev. Fluid Mech. 20, 487526.
Herbert, T. 1997 Parabolized stability equations. Ann. Rev. Fluid Mech. 29, 245283.
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Ann. Rev. Fluid Mech. 22, 473537.
Jocksch, A. & Kleiser, L. 2008 Growth of turbulent spots in high-speed boundary layers on a flat plate. Intl J. Heat Fluid Flow 29, 15431557.
Jordinson, R. 1970 The flat plate boundary layer. Part 1. Numerical integration of the Orr–Sommerfeld equation. J. Fluid Mech. 43, 801811.
Keller, H. B. 1978 Numerical methods in boundary-layer theory. Annu. Rev. Fluid Mech. 10, 417433.
Keulegan, G. H. 1953 Characteristics of internal solitary waves. J. Res. Natl Bureau Standards 51, 133140.
Klebanoff, P. S. 1971 Effect of free-stream turbulence on the laminar boundary layer. Bull. Am. Phys. Soc. 10, 1323.
Li, F. & Malik, M. R. 1995 Mathematical nature of parabolized stability equations. In Laminar–Turbulent Transition (ed. Kobayashi, R), pp. 205212. Springer.
Liu, P. L.-F. & Orfila, A. 2004 Viscous effects on transient long-wave propagation. J. Fluid Mech. 520, 8392.
Liu, P. L.-F., Park, Y. S. & Cowen, E. A. 2007 Boundary layer flow and bed shear stress under a solitary wave. J. Fluid Mech. 574, 449463.
Miles, J. W. 1980 Solitary waves. Annu. Rev. Fluid Mech. 12, 1143.
Orszag, S. A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50, 689703.
Ozdemir, C. E., Hsu, T.-J. & Balachandar, S. 2013 Direct numerical simulations of instability and boundary layer turbulence under a solitay wave. J. Fluid Mech. 731, 545578.
Pedersen, G. K., Lindstrøm, E., Bertelsen, A. F., Jensen, A., Laskovski, D. & Sælevik, G. 2013 Runup and boundary layers on sloping beaches. Phys. Fluids 25, 0121102, 123.
Pralits, J. O., Airiau, C., Hanifi, A. & Henningson, D. S. 2000 Sensitivity analysis using adjoint parabolized stability equations for compressible flows. Flow Turbul. Combust. 65, 321346.
Pralits, J. O., Hanifi, A. & Henningson, D. S. 2002 Adjoint-based optimization of steady suction for disturbance control in incompressible flows. J. Fluid Mech. 467, 129161.
Shuto, N. 1976 Transformation of nonlinear long waves. In Proceedings of 15th Conference on Coastal Enginearing. Coastal Engineering Society in Japan.
Stastna, M. & Lamb, K. G. 2002 Vortex shedding and sediment resuspension associated with the interaction of an internal solitary wave and the bottom boundary layer. Geophys. Res. Lett. 29, 7-1–7-3.
Stastna, M. & Lamb, K. G. 2008 Sediment resuspension mechanisms associated with internal waves in coastal waters. J. Geophys. Res. 113, 119.
Sumer, B. M., Jensen, P. M., Sørensen, L. B., Fredsøe, J., Liu, P. L.-F. & Carstensen, S. 2010 Coherent structures in wave boundary layers part 2 solitary motion. J. Fluid Mech. 646, 207231.
Tanaka, M. 1986 The stability of solitary waves. Phys. Fluids 29, 650655.
Thiem, Ø., Carr, M., Berntsen, J. & Davies, P. A. 2011 Numerical simulation of internal solitary wave-induced reverse flow and associated vortices in a shallow, two-layer fluid benthic boundary layer. Ocean Dyn. 61, 857872.
Van Stijn, T. L. & Van De Vooren, A. I. 1980 An accurate method for solving the Orr–Sommerfeld equation. J. Eng. Math. 14, 1726.
Vittori, G. & Blondeaux, P. 2008 Turbulent boundary layer under a solitary wave. J. Fluid Mech. 615, 433443.
Vittori, G. & Blondeaux, P. 2011 Characteristics of the boundary layer at the bottom of a solitary wave. Coastal Engng 58, 206213.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Linear stability of boundary layers under solitary waves

  • Joris C. G. Verschaeve (a1) (a2) and Geir K. Pedersen (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed