Skip to main content Accessibility help
×
Home

Kinematics of vortex ring generated by a drop upon impacting a liquid pool

  • Abhishek Saha (a1) (a2), Yanju Wei (a1) (a3), Xiaoyu Tang (a1) and Chung K. Law (a1)

Abstract

We herein report an experimental study on the morphological evolution of a vortex ring formed inside a liquid pool after it is impacted and penetrated by a coalescing drop of the same liquid. The dynamics of the penetrating vortex ring along with the deformation of the pool surface has been captured using simultaneous high-speed laser induced fluorescence and shadowgraph techniques. It is identified that the motion of such a vortex ring can be divided into three stages, during which inertial, capillary and viscous effects alternatingly play dominant roles to modulate the penetration process, resulting in linear, non-monotonic and decelerating motion in these three stages respectively. Furthermore, we also evaluate the relevant time and length scales of these three stages and subsequently propose a unified description of the downward motion of the penetrating vortex ring. Finally, we use the experimental data for a range of drop diameters and impact speeds to validate the proposed scaling.

Copyright

Corresponding author

Email address for correspondence: asaha@eng.ucsd.edu

References

Hide All
Aziz, S. D. & Chandra, S. 2000 Impact, recoil and splashing of molten metal droplets. Intl J. Heat Mass Transfer 43 (16), 28412857.10.1016/S0017-9310(99)00350-6
Beilharz, D., Guyon, A., Li, E. Q., Thoraval, M.-J. & Thoroddsen, S. T. 2015 Antibubbles and fine cylindrical sheets of air. J. Fluid Mech. 779, 87115.10.1017/jfm.2015.335
Bird, J. C., de Ruiter, R., Courbin, L. & Stone, H. A. 2010 Daughter bubble cascades produced by folding of ruptured thin films. Nature 465, 759762.10.1038/nature09069
van der Bos, A., van der Meulen, M.-J., Driessen, T., van den Berg, M., Reinten, H., Wijshoff, H., Versluis, M. & Lohse, D. 2014 Velocity profile inside piezoacoustic inkjet droplets in flight. Phys. Rev. A 1, 014004.
Castillo-Orozco, E., Davanlou, A., Choudhury, P. K. & Kumar, R. 2015 Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets. Phys. Rev. E 92 (5), 053022.
Chapman, D. S. & Critchlow, P. R. 1967 Formation of vortex rings from falling drops. J. Fluid Mech. 29 (1), 177185.10.1017/S0022112067000709
Deegan, R. D., Brunet, P. & Eggers, J. 2007 Complexities of splashing. Nonlinearity 21 (1), C1.
Dooley, B. S., Warncke, A. E., Gharib, M. & Tryggvason, G. 1997 Vortex ring generation due to the coalescence of a water drop at a free surface. Exp. Fluids 22 (5), 369374.10.1007/s003480050062
Gart, S., Mates, J. E., Megaridis, C. M. & Jung, S. 2015 Droplet impacting a cantilever: a leaf-raindrop system. Phys. Rev. A 3 (4), 044019.
Gilet, T. & Bourouiba, L. 2015 Fluid fragmentation shapes rain-induced foliar disease transmission. J. R. Soc. Interface 12 (104), 20141092.10.1098/rsif.2014.1092
Hsiao, M., Lichter, S. & Quintero, L. G. 1988 The critical Weber number for vortex and jet formation for drops impinging on a liquid pool. Phys. Fluids 31 (12), 35603562.10.1063/1.866872
Josserand, C. & Thoroddsen, S. T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.10.1146/annurev-fluid-122414-034401
Kundu, P. & Cohen, I. 2008 Fluid Mechanics. Academic Press.
Leng, L. J. 2001 Splash formation by spherical drops. J. Fluid Mech. 427, 73105.10.1017/S0022112000002500
Michon, G.-J., Josserand, C. & Séon, T. 2017 Jet dynamics post drop impact on a deep pool. Phys. Rev. Fluids 2 (2), 023601.10.1103/PhysRevFluids.2.023601
Moreira, A. L. N., Moita, A. S. & Panao, M. R. 2010 Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful? Prog. Energy Combust. Sc. 36 (5), 554580.10.1016/j.pecs.2010.01.002
Murphy, D. W., Li, C., dAlbignac, V., Morra, D. & Katz, J. 2015 Splash behaviour and oily marine aerosol production by raindrops impacting oil slicks. J. Fluid Mech. 780, 536577.10.1017/jfm.2015.431
NASA, Glenn Research Center1999 Aerodynmics index: drag of a sphere.https://www.grc.nasa.gov/www/k-12/airplane/dragsphere.html.
Pan, K. L. & Law, C. K. 2007 Dynamics of droplet–film collision. J. Fluid. Mech. 587, 122.10.1017/S002211200700657X
Peck, B. & Sigurdson, L. 1994 The three-dimensional vortex structure of an impacting water drop. Phys. Fluids 6 (2), 564576.10.1063/1.868352
Prosperetti, A., Crum, L. A. & Pumphrey, H. C. 1989 The underwater noise of rain. J. Geophys. Res. 94 (C3), 32553259.10.1029/JC094iC03p03255
Purvis, R. & Smith, F. T. 2005 Droplet impact on water layers: post-impact analysis and computations. Phil. Trans. R. Soc. Lond. A 363 (1830), 12091221.10.1098/rsta.2005.1562
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12 (2), 61.10.1016/0169-5983(93)90106-K
Rein, M. 1996 The transitional regime between coalescing and splashing drops. J. Fluid Mech. 306, 145165.10.1017/S0022112096001267
Rodriguez, F. & Mesler, R. 1988 The penetration of drop-formed vortex rings into pools of liquid. J. Colloid Interface Sci. 121 (1), 121129.10.1016/0021-9797(88)90414-6
Shankar, P. N. & Kumar, M. 1995 Vortex rings generated by drops just coalescing with a pool. Phys. Fluids 7 (4), 737746.10.1063/1.868597
Tang, X., Saha, A., Law, C. K. & Sun, C. 2016 Nonmonotonic response of drop impacting on liquid film: mechanism and scaling. Soft Matt. 12 (20), 45214529.
Tang, X., Saha, A., Law, C. K. & Sun, C. 2018 Bouncing-to-merging transition in drop impact on liquid film: role of liquid viscosity. Langmuir 34 (8), 26542662.10.1021/acs.langmuir.7b03936
Tang, X., Saha, A., Law, C. K. & Sun, C. 2019 Bouncing drop on liquid film: dynamics of interfacial gas layer. Phys. Fluids 31 (1), 013304.10.1063/1.5063257
Thoraval, M.-J., Takehara, K., Etoh, T. G. & Thoroddsen, S. T. 2013 Drop impact entrapment of bubble rings. J. Fluid Mech. 724, 234258.10.1017/jfm.2013.147
Thoroddsen, S. T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.10.1017/S0022112001007030
Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.10.1017/S0022112002003427
Tran, T., de Maleprade, H., Sun, C. & Lohse, D. 2013 Air entrainment during impact of droplets on liquid surfaces. J. Fluid Mech. 726, R3.10.1017/jfm.2013.261
Weheliye, H., Dong, T. & Angeli, P. 2017 On the effect of surfactants on drop coalescence at liquid/liquid interfaces. Chem. Engng Sci. 161, 215227.10.1016/j.ces.2016.12.009
Weiss, D. A. & Yarin, A. L. 1999 Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation. J. Fluid Mech. 385, 229254.10.1017/S002211209800411X
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.10.1146/annurev.fluid.38.050304.092144
Zhao, H., Brunsvold, A. & Munkejord, S. T. 2011 Investigation of droplets impinging on a deep pool: transition from coalescence to jetting. Exp. Fluids 50 (3), 621635.10.1007/s00348-010-0966-1
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
UNKNOWN
Supplementary materials

Saha et al. supplementary material
Saha et al. supplementary material 1

 Unknown (776 KB)
776 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed