Skip to main content Accessibility help

Jet–flap interaction tones

  • Peter Jordan (a1) (a2), Vincent Jaunet (a1), Aaron Towne (a3), André V. G. Cavalieri (a4), Tim Colonius (a5), Oliver Schmidt (a5) and Anurag Agarwal (a6) (a2)...


Motivated by the problem of jet–flap interaction noise, we study the tonal dynamics that occurs when an isothermal turbulent jet grazes a sharp edge. We perform hydrodynamic and acoustic pressure measurements to characterise the tones as a function of Mach number and streamwise edge position. The observed distribution of spectral peaks cannot be explained using the usual edge-tone model, in which resonance is underpinned by coupling between downstream-travelling Kelvin–Helmholtz wavepackets and upstream-travelling sound waves. We show, rather, that the strongest tones are due to coupling between Kelvin–Helmholtz wavepackets and a family of trapped, upstream-travelling acoustic modes in the potential core, recently studied by Towne et al. (J. Fluid Mech. vol. 825, 2017) and Schmidt et al. (J. Fluid Mech. vol. 825, 2017). We also study the band-limited nature of the resonance, showing the high-frequency cutoff to be due to the frequency dependence of the upstream-travelling waves. Specifically, at high Mach number, these modes become evanescent above a certain frequency, whereas at low Mach number they become progressively trapped with increasing frequency, which inhibits their reflection in the nozzle plane.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Jet–flap interaction tones
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Jet–flap interaction tones
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Jet–flap interaction tones
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence:


Hide All
Alkislar, M. B., Krothapalli, A. & Lourenco, L. M. 2003 Structure of a screeching rectangular jet: a stereoscopic particle image velocimetry study. J. Fluid Mech. 489, 121154.
Bogey, C. & Gojon, R. 2017 Feedback loop and upwind-propagating waves in ideally expanded supersonic impinging round jets. J. Fluid Mech. 823, 562591.
Brès, G. A., Jordan, P., Jaunet, V., Le Rallic, M., Cavalieri, A. V. G., Towne, A., Lele, S., Colonius, T. & Schmidt, O. 2018 Importance of the nozzle-exit boundary layer state in subsonic turbulent jets. J. Fluid Mech. 851, 83124.
Briggs, R. J.1964 Electron-stream interaction with plasmas. MIT Press.
Cavalieri, A. V. G., Rodríguez, D., Jordan, P., Colonius, T. & Gervais, Y. 2013 Wavepackets in the velocity field of turbulent jets. J. Fluid Mech. 730, 559592.
Coltman, J. W. 1976 Jet drive mechanisms in edge tones and organ pipes. J. Acoust. Soc. Am. 60 (3), 725733.
Curle, N. 1953 The mechanics of edge-tones. Proc. R. Soc. Lond. A 216, 412424.
Debauchies, I. 1990 Ten Lectures on Wavelets. SIAM.
Edgington-Mitchell, D., Oberleithner, K., Honnery, D. R. & Soria, J. 2014 Coherent structure and sound production in the helical mode of a screeching axisymmetric jet. J. Fluid Mech. 748, 822847.
Fabre, B., Gilbert, J., Hirschberg, A. & Pelorson, X. 2012 Aeroacoustics of musical instruments. Annu. Rev. Fluid Mech. 44, 125.
Farge, M. 1992 Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395457.
Henderson, B., Bridges, J. & Wernet, M. 2005 An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets. J. Fluid Mech. 542, 115137.
Ho, C.-M. & Nosseir, N. S. 1981 Dynamics of an impinging jet. Part 1. The feedback phenomenon. J. Fluid Mech. 105, 119142.
Howe, M. S. 1975 Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. J. Fluid Mech. 71 (4), 625673.
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1978 The free shear layer tone phenomenon and probe interference. J. Fluid Mech. 87 (2), 349383.
Jaunet, V., Jordan, P. & Cavalieri, A. V. G. 2017 Two-point coherence of wave packets in turbulent jets. Phys. Rev. Fluids 2 (2), 024604.
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173195.
Jordan, P., Zhang, M., Lehnasch, G. & Cavalieri, A. V. G. 2017 Modal and non-modal linear wavepacket dynamics in turbulent jets. In 23rd AIAA/CEAS Aeroacoustics Conference, p. 3379.
Kegerise, M. A, Spina, E. F., Garg, S. & Cattafesta, L. N. 2004 Mode-switching and nonlinear effects in compressible flow over a cavity. Phys. Fluids 16 (3), 678687.
Krothapalli, A., Rajkuperan, E., Alvi, F. & Lourenco, L. 1999 Flow field and noise characteristics of a supersonic impinging jet. J. Fluid Mech. 392, 155181.
Landau, L. D. & Lifshitz, E. M. 2013 Course of Theoretical Physics. Elsevier.
Landreth, C. C. & Adrian, R. J. 1990 Impingement of a low Reynolds number turbulent circular jet onto a flat plate at normal incidence. Exp. Fluids 9 (1–2), 7484.
Lawrence, J. L. T. & Self, R. H. 2015 Installed jet-flap impingement tonal noise. AIAA Paper 20153118.
Lessen, M., Fox, J. A. & Zien, H. M. 1965 On the inviscid stability of the laminar mixing of two parallel streams of a compressible fluid. J. Fluid Mech. 23 (2), 355367.
McKinzie, D. J. Jr & Burns, R. J. 1975 Analysis of noise produced by jet impingement near the trailing edge of a flat and a curved plate. NASA Tech. Rep. TM-X-3171.
Michalke, A.1970 A note on the spatial jet-instability of the compressible cylindrical vortex sheet. DLR-Forschungsber. FB-70-51.
Monkewitz, P. A., Huerre, P. & Chomaz, J.-M. 1993 Global linear stability analysis of weakly non-parallel shear flows. J. Fluid Mech. 251, 120.
Neuwerth, G.1974 Acoustic feedback phenomena of the subsonic and hypersonic free jet impinging on a foreign body. NASA TT F-15719.
Powell, A. 1953a On edge tones and associated phenomena. Acta Acust. United Acust. 3 (4), 233243.
Powell, A. 1953b On the mechanism of choked jet noise. Proc. Phys. Soc. B 66 (12), 1039.
Powell, A. 1961 On the edgetone. J. Acoust. Soc. Am. 33 (4), 395409.
Powell, A. 1988 The sound-producing oscillations of round underexpanded jets impinging on normal plates. J. Acoust. Soc. Am. 83 (2), 515533.
Richardson, E. G. 1931 Edge tones. Proc. Phys. Soc. 43 (4), 394.
Rienstra, S. W. 2003 Sound propagation in slowly varying lined flow ducts of arbitrary cross-section. J. Fluid Mech. 495, 157173.
Rienstra, S. W. 2007 Acoustic scattering at a hard–soft lining transition in a flow duct. J. Engng Maths 59 (4), 451475.
Rossiter, J. E.1964 Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Tech. Rep. Ministry of Aviation; Royal Aircraft Establishment; RAE Farnborough.
Rowley, C. W., Colonius, T. & Basu, A. J. 2002 On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. J. Fluid Mech. 455, 315346.
Rowley, C. W., Williams, D. R., Colonius, T., Murray, R. M. & Macmynowski, D. G. 2006 Linear models for control of cavity flow oscillations. J. Fluid Mech. 547, 317330.
Schmidt, O., Towne, A., Colonius, T., Cavalieri, A. V. G., Jordan, P. & Brès, G. A. 2017 Wavepackets and trapped acoustic modes in a turbulent jet: coherent-structure eduction and global stability. J. Fluid Mech. 825, 11531181.
Staubli, T. & Rockwell, D. 1987 Interaction of an unstable planar jet with an oscillating leading edge. J. Fluid Mech. 176, 135167.
Tam, C. K. W. & Ahuja, K. K. 1990 Theoretical model of discrete tone generation by impinging jets. J. Fluid Mech. 214, 6787.
Tam, C. K. W. & Hu, F. Q. 1989 On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447483.
Towne, A., Cavalieri, A. V. G., Jordan, P., Colonius, T., Schmidt, O., Jaunet, V. & Brès, G. A. 2017 Acoustic resonance in the potential core of subsonic jets. J. Fluid Mech. 825, 11131152.
Umeda, Y., Maeda, H. & Ishii, R. 1987 Discrete tones generated by the impingement of a high-speed jet on a circular cylinder. Phys. Fluids 30 (8), 23802388.
Weightman, J. L., Amili, O., Honnery, D., Soria, J. & Edgington-Mitchell, D. 2017 An explanation for the phase lag in supersonic jet impingement. J. Fluid Mech. 815, R1.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Jet–flap interaction tones

  • Peter Jordan (a1) (a2), Vincent Jaunet (a1), Aaron Towne (a3), André V. G. Cavalieri (a4), Tim Colonius (a5), Oliver Schmidt (a5) and Anurag Agarwal (a6) (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.