Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-22T21:08:01.148Z Has data issue: false hasContentIssue false

Investigations on the turbulent${\boldsymbol{/}}$non-turbulent interface in supersonic compressible plate turbulent boundary layer

Published online by Cambridge University Press:  03 June 2024

Shuhuai Su
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beihang University, Beijing 100191, PR China
Yanguang Long
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beihang University, Beijing 100191, PR China
Jinjun Wang*
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beihang University, Beijing 100191, PR China
Xinliang Li
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
*
Email address for correspondence: jjwang@buaa.edu.cn

Abstract

The turbulent boundary layer (TBL) is a widely existing flow phenomenon in nature and engineering applications. Its strong mixing effect can achieve more sufficient material mixing, heat transport, etc. The understanding of the entrainment process and mechanism of irrotational fluids entering the turbulent region can be promoted by studying the geometric and dynamic characteristics of turbulent${/}$non-turbulent interfaces (TNTI). In compressible flow, it is unclear whether the properties of TNTI will change and whether the entrainment will show different features due to the influence of compressibility. Based on the direct numerical simulation results of supersonic compressible plate TBLs with Mach number of 2.9, the geometric and dynamic characteristics of TNTI are investigated in this paper. The interface is identified by the enstrophy method, and the height, thickness, fractal dimension, enstrophy transportation and entrainment characteristics of the interface are investigated. It is found that for the enstrophy transportation in a TBL, the contribution of compressibility-related terms accounts for approximately 13.4 % of the total enstrophy transportation, which tends to transfer the enstrophy of turbulence near the interface to both directions vertical to the interface. This promotes the expansion of the turbulent region towards the non-turbulent region, and the mean height, thickness and entrainment velocity are increased by approximately 3.7 %, 7.0 % and 8.5 %, respectively, while the fractal dimension is basically unaffected. Different from the incompressible flow, the contribution of the compressibility-related terms to the entrainment velocity is independent of the local curvature, and the intense entrainment process is more likely to occur on a highly curved concave surface.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, R.C. & Catrakis, H.J. 2020 On intermittency and the physical thickness of turbulent fluid interfaces. J. Fluid Mech. 540 (1), 39.CrossRefGoogle Scholar
Balamurugan, G., Rodda, A., Philip, J. & Mandal, A.C. 2020 Characteristics of the turbulent non-turbulent interface in a spatially evolving turbulent mixing layer. J. Fluid Mech. 894, A4.CrossRefGoogle Scholar
Borrell, G. & Jimenez, J. 2016 Properties of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 801, 554596.CrossRefGoogle Scholar
Chauhan, K., Philip, J., de Silva, C.M., Hutchins, N. & Marusic, I. 2014 The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119151.CrossRefGoogle Scholar
Cogo, M., Salvadore, F., Picano, F. & Bernardini, M. 2022 Direct numerical simulation of supersonic and hypersonic turbulent boundary layers at moderate-high Reynolds numbers and isothermal wall condition. J. Fluid Mech. 945, A30.CrossRefGoogle Scholar
Corrsin, S. & Kistler, A.L. 1995 Free-stream boundaries of turbulent flows. NACA Tech. Rep. TN-1244.Google Scholar
Dahm, W.J.A. & Dimotakis, P.E. 1987 Measurements of entrainment and mixing in turbulent jets. AIAA J. 25 (9), 12161223.CrossRefGoogle Scholar
Dang, G, Liu, S., Duan, J. & Li, X 2022 Direct numerical simulation of compressible turbulence accelerated by graphics processing unit: an open-access database of high-resolution direct numerical simulation. AIP Adv. 12 (12), 125111.CrossRefGoogle Scholar
Dimotakis, P.E. 2000 The mixing transition in turbulent flows. J. Fluid Mech. 409, 6998.CrossRefGoogle Scholar
Duan, J., Li, X., Li, X. & Liu, H. 2021 Direct numerical simulation of a supersonic turbulent boundary layer over a compression–decompression corner. Phys. Fluids 33 (6), 065111.CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martín, M.P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. . J. Fluid Mech. 672, 245267.CrossRefGoogle Scholar
Eisma, J., Westerweel, J., Ooms, G. & Elsinga, G.E. 2015 Interfaces and internal layers in a turbulent boundary layer. Phys. Fluids 27 (5), 055103.CrossRefGoogle Scholar
Ferré, J., Mumford, J., Savill, A. & Giralt, F. 1990 Measurements of entrainment and mixing in turbulent jets. J. Fluid Mech. 210, 371414.CrossRefGoogle Scholar
Gampert, M., Kleinheinz, K., Peters, N. & Pitsch, H. 2014 Experimental and numerical study of the scalar turbulent/non-turbulent interface layer in a jet flow. Flow Turbul. Combust. 92 (1–2), 429449.CrossRefGoogle Scholar
Holzner, M. & Lüthi, B. 2011 Laminar superlayer at the turbulence boundary. Phys. Rev. Lett 106 (13), 134503.CrossRefGoogle ScholarPubMed
Jahanbakhshi, R. & Madnia, C.K. 2016 Entrainment in a compressible turbulent shear layer. J. Fluid Mech. 797, 564603.CrossRefGoogle Scholar
Lee, J., Sung, H.J. & Zaki, T.A. 2017 Signature of large-scale motions on turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 819, 165187.CrossRefGoogle Scholar
Long, Y., Wang, J. & Pan, C. 2022 Universal modulations of large-scale motions on entrainment of turbulent boundary layers. J. Fluid Mech. 941, A68.CrossRefGoogle Scholar
Long, Y., Wu, D. & Wang, J. 2021 A novel and robust method for the turbulent/non-turbulent interface detection. Exp. Fluids 62 (7), 138.CrossRefGoogle Scholar
Martín, M.P., Taylor, E.M., Wu, M. & Weirs, V.G. 2006 A bandwidth-optimized weno scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys. 220 (1), 270289.CrossRefGoogle Scholar
Mathew, J. & Basu, A.J. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14 (7), 2065.CrossRefGoogle Scholar
Mistry, D., Philip, J. & Dawson, J.R. 2019 Kinematics of local entrainment and detrainment in a turbulent jet. J. Fluid Mech. 871, 896924.CrossRefGoogle Scholar
Mungal, M.G., Karasso, P.S. & Lozano, A. 1991 The visible structure of turbulent jet diffusion flames: large-scale organization and flame tip oscillation. Combust. Sci. Technol. 76 (4–6), 165185.CrossRefGoogle Scholar
Natrajan, V.K. & Christensen, K.T. 2006 The role of coherent structures in subgrid-scale energy transfer within the log layer of wall turbulence. Phys. Fluids 18 (6), 065104.CrossRefGoogle Scholar
Osaka, H., Kameda, T. & Mochizuki, S. 1998 Re-examination of the Reynolds-number-effect on the mean flow quantities in a smooth wall turbulent boundary layer. JSME Intl J. B 41 (1), 123129.CrossRefGoogle Scholar
Philip, J., Bermejo-Moreno, I., Chung, D. & Marusic, I. 2015 Characteristics of the entrainment velocity in a developing wake. In Proceedings of the Ninth International Symposium on Turbulence and Shear Flow Phenomena (TSFP-9), Melbourne, Australia, vol. 3, paper 9C-5.Google Scholar
Pirozzoli, S., Grasso, F. & Gatski, T.B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at $m=2.25$. Phys. Fluids 16 (3), 530545.CrossRefGoogle Scholar
Prasad, R.R. & Sreenivasan, K.R. 1989 Scalar interfaces in digital images of turbulent flows. Exp. Fluids 7, 259264.CrossRefGoogle Scholar
Qian, Y. 2004 Aerodynamics. Beihang University Press.Google Scholar
Schlichting, H. & Gersten, K. 2017 Boundary-Layer Theory. Springer.CrossRefGoogle Scholar
da Silva, C.B., Hunt, J.C.R., Eames, I. & Westerweel, J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46 (1), 567590.CrossRefGoogle Scholar
de Silva, C.M., Philip, J., Chauhan, K., Meneveau, C. & Marusic, I. 2013 Multiscale geometry and scaling of the turbulent-nonturbulent interface in high Reynolds number boundary layers. Phys. Rev. Lett. 111 (4), 044501.CrossRefGoogle ScholarPubMed
Van Driest, E.R. 1951 Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18 (3), 145160.CrossRefGoogle Scholar
Watanabe, T., Naito, T., Sakai, Y., Nagata, K. & Ito, Y. 2015 Mixing and chemical reaction at high Schmidt number near turbulent/nonturbulent interface in planar liquid jet. Phys. Fluids 27 (3), 035114.CrossRefGoogle Scholar
Watanabe, T., Zhang, X. & Nagata, K. 2018 Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers. Phys. Fluids 30 (3), 035102.CrossRefGoogle Scholar
Wolf, M., Holzner, M., Lüthi, B., Krug, D., Kinzelbach, W. & Tsinober, A. 2013 Effects of mean shear on the local turbulent entrainment process. J. Fluid Mech. 731, 95116.CrossRefGoogle Scholar
Wolf, M., Lüthi, B., Holzner, M., Krug, D., Kinzelbach, W. & Tsinober, A. 2012 Investigations on the local entrainment velocity in a turbulent jet. Phys. Fluids 24 (10), 105110.CrossRefGoogle Scholar
Wu, D., Wang, J., Cui, G. & Pan, C. 2020 Effects of surface shapes on properties of turbulent/non-turbulent interface in turbulent boundary layers. Sci. China Technol. Sci. 63 (2), 214222.CrossRefGoogle Scholar
Xu, D., Wang, J. & Chen, S. 2023 Reynolds number and wall cooling effects on correlations between the thermodynamic variables in hypersonic turbulent boundary layers. J. Fluid Mech. 965, A4.CrossRefGoogle Scholar
Zhang, C., Duan, L. & Choudhari, M.M. 2018 a Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA J. 56 (11), 42974311.CrossRefGoogle Scholar
Zhang, X., Watanabe, T. & Nagata, K. 2018 b Turbulent/nonturbulent interfaces in high-resolution direct numerical simulation of temporally evolving compressible turbulent boundary layers. Phys. Rev. Fluids 3 (9), 094605.CrossRefGoogle Scholar
Zhang, X., Watanabe, T. & Nagata, K. 2023 Reynolds number dependence of the turbulent/non-turbulent interface in temporally developing turbulent boundary layers. J. Fluid Mech. 964, A8.CrossRefGoogle Scholar
Zhuang, Y., Tan, H., Huang, H., Liu, Y. & Zhang, Y. 2018 Fractal characteristics of turbulent–non-turbulent interface in supersonic turbulent boundary layers. J. Fluid Mech. 843, R2.CrossRefGoogle Scholar