Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-27T16:56:20.743Z Has data issue: false hasContentIssue false

Intrinsic features of flow-induced stability of a square cylinder

Published online by Cambridge University Press:  24 July 2024

Cuiting Lin
Affiliation:
Center for Turbulence Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
Md. Mahbub Alam*
Affiliation:
Center for Turbulence Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
*
Email address for correspondence: alam@hit.edu.cn, alamm28@yahoo.com

Abstract

Vortex-induced vibrations and galloping of an elastically mounted square cylinder are investigated for cylinder mass ratio m* = 2–50, damping ratio ζ = 0–1.0, mass-damping ratio m*ζ = 0–50 and flow reduced velocity Ur = 1–80. We home in on the effects of m*, ζ, m*ζ, $({m^\ast } + m_{a\textrm{0}}^\ast )\zeta$ and $({m^\ast } + m_{ae}^\ast )\zeta$ on the critical reduced velocity Urc marking the onset of galloping, where $m_{a\textrm{0}}^\ast $ is the quiescent-fluid added mass ratio and $m_{ae}^\ast $ is the effective added mass ratio. Vibration responses, forces, vibration frequencies and added mass ratios are studied and discussed. The different branches of vortex-induced vibrations have different dependencies of $m_{ae}^\ast $ on Ur. The $m_{ae}^\ast $ in the initial branch is positive and drops rapidly with Ur, but that in the lower branch is negative and declines gently. In the galloping regime, $m_{ae}^\ast $ jumps from negative to positive at the onset of galloping, declining slightly with increasing Ur. Our results and prediction equations show that when ζ = 0, Urc is independent of m* for m* ≥ 5, albeit slightly higher for m* = 3. The latter is ascribed to mode competition. When ζ > 0, Urc linearly increases with increasing ζ. Detailed analysis substantiates that m*ζ or $({m^\ast } + m_{a\textrm{0}}^\ast )\zeta$ does not serve as the unique criterion to predict the galloping occurrence. Here, we propose a new combined mass-damping parameter $({m^\ast } + m_{ae}^\ast )\zeta$ in the relationship between galloping onsets and structural properties, which successfully scales all data of Urc at different m* and ζ values.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alam, M.M. 2021 Effects of mass and damping on flow-induced vibration of a cylinder interacting with the wake of another cylinder at high reduced velocities. Energies 14, 5148.CrossRefGoogle Scholar
Alam, M.M. 2022 A note on flow-induced force measurement of oscillating cylinder by loadcell. Ocean Engng 245, 110538.CrossRefGoogle Scholar
Bahmani, M.H. & Akbari, M.H. 2010 Effects of mass and damping ratios on VIV of a circular cylinder. Ocean Engng 37, 511519.CrossRefGoogle Scholar
Barrero-Gil, A., Sanz-Andres, A. & Roura, M. 2009 Transverse galloping at low Reynolds numbers. J. Fluids Struct. 25, 12361242.CrossRefGoogle Scholar
Bearman, P.W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16, 195222.CrossRefGoogle Scholar
Bhatt, R. & Alam, M.M. 2018 Vibrations of a square cylinder submerged in a wake. J. Fluids Mech. 853, 301332.CrossRefGoogle Scholar
Blevins, R.D. 1990 Flow-induced Vibration. Van Nostrand Reinhold.Google Scholar
Blevins, R.D. & Coughran, C.S. 2009 Experimental investigation of vortex-induced vibration in one and two dimensions with variable mass, damping, and Reynolds number. J. Fluids Engng 131, 101202.CrossRefGoogle Scholar
Chen, G., Alam, M.M. & Zhou, Y. 2020 Dependence of added mass on cylinder cross sectional geometry and orientation. J. Fluid Struct. 99, 103142.CrossRefGoogle Scholar
Daniel, W.C., Todd, M.C. & Yahya, M.S. 2021 Flow-induced vibrations of a square prism free to oscillate in the cross-flow and inline directions. J. Fluid Mech. 919 (A2), 131.Google Scholar
Govardhan, R. & Williamson, C.H.K. 2000 Modes of vortex formation and frequency response of a freely vibrating cylinder. J. Fluid Mech. 420, 85130.CrossRefGoogle Scholar
Govardhan, R. & Williamson, C.H.K. 2004 Critical mass in vortex-induced vibration of a cylinder. Eur. J. Mech. (B/Fluids) 23, 1727.CrossRefGoogle Scholar
Griffin, O.M. 1980 Vortex-excited cross-flow vibrations of a single cylindrical tube. Trans ASME: J. Press. Vessel Technol. 102, 158166.Google Scholar
Griffin, O.M., Skop, R.A. & Ramberg, S.E. 1975 The resonant vortex-excited vibrations of structures and cable systems. In 7th Offshore Technology Conference, Houston, TX, OTC Paper 2319.Google Scholar
Han, P. & Langre, E.D. 2022 There is no critical mass ratio for galloping of a square cylinder under flow. J. Fluid Mech. 931, A27 (1–20).CrossRefGoogle Scholar
Joly, A., Etienne, S. & Pelletier, D. 2012 Galloping of square cylinders in cross-flow at low Reynolds numbers. J. Fluids Struct. 28, 232243.CrossRefGoogle Scholar
Khalak, A. & Williamson, C.H.K. 1999 Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. J. Fluids Struct. 13, 813851.CrossRefGoogle Scholar
Li, X., Lyu, Z., Kou, J. & Zhang, W. 2019 Mode competition in galloping of a square cylinder at low Reynolds number. J. Fluid Mech. 867, 516555.CrossRefGoogle Scholar
Lighthill, J 1986 Wave loading on offshore structures. J. Fluid Mech. 173, 667681.CrossRefGoogle Scholar
Manson, J.R., Pender, G. & Wallis, S.G. 1996 Limitations of traditional finite volume discretizations for unsteady computational fluid dynamics. AIAA J. 34 (5), 10741076.CrossRefGoogle Scholar
Meliga, P. & Chomaz, J. 2011 An asymptotic expansion for the vortex-induced vibrations of a circular cylinder. J. Fluid Mech. 671, 137167.CrossRefGoogle Scholar
Mittal, N.S. 2017 A new regime of multiple states in free vibration of a cylinder at low Re. J. Fluids Struct. 68, 310321.Google Scholar
Païdoussis, M.P., Price, S.J. & Delangre, E. 2010 Fluid-Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press.CrossRefGoogle Scholar
Pan, Z.Y., Cui, W.C. & Miao, Q.M. 2007 Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code. J. Fluid Struct. 23, 2327.CrossRefGoogle Scholar
Patankar, S.V. 1980 Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing, Taylor & Francis Group.Google Scholar
Qin, B., Alam, M.M. & Zhou, Y. 2017 Two tandem cylinders of different diameters in crossflow: flow-induced vibration. J. Fluid Mech. 829, 621658.CrossRefGoogle Scholar
Qin, B., Alam, M.M. & Zhou, Y. 2019 Free vibrations of two tandem elastically mounted cylinders in cross-flow. J. Fluid Mech. 861, 349381.CrossRefGoogle Scholar
Rabiee, A.H. & Farahani, S.D. 2020 A comprehensive study of heat transfer characteristic and two-dimensional FIV for heated square-section cylinder with different damping ratios. Intl Commun Heat Mass Transfer 116, 104680.CrossRefGoogle Scholar
Sarpkaya, T. 1978 Fluid forces on oscillating cylinders. ASCE J. Waterway Port Coaast. Ocean Div. 104, 275290.CrossRefGoogle Scholar
Sarpkaya, T. 1995 Hydrodynamic damping, flow-induced oscillation, and biharmonic response. ASME J. Offshore Mech. Arctic Engng 117, 232238.CrossRefGoogle Scholar
Sen, S. & Mittal, S. 2011 Free vibration of a square cylinder at low Reynolds numbers. J. Fluids Struct. 27, 875884.CrossRefGoogle Scholar
Sen, S. & Mittal, S. 2015 Effect of mass ratio on free vibrations of a square cylinder at low Reynolds numbers. J. Fluids Struct. 54, 661678.CrossRefGoogle Scholar
Sen, S. & Mittal, S. 2016 Free vibrations of a square cylinder of varying mass ratios. Procedia Engng 144, 3442.CrossRefGoogle Scholar
Shaaban, M. & Mohany, A. 2018 Flow-induced vibration of three unevenly spaced in-line cylinders in cross-flow. J. Fluids Struct. 76, 367383.CrossRefGoogle Scholar
Shen, L.W., Chan, E.S. & Wei, Y. 2018 Beating motion of a circular cylinder in vortex-induced vibrations. Fluid Dyn. Res. 50, 025503.CrossRefGoogle Scholar
Sourav, K. & Sen, S. 2019 Transition of VIV-only motion of a square cylinder to combined VIV and galloping at low Reynolds numbers. Ocean Engng 187, 106208.CrossRefGoogle Scholar
Voorhees, A., Dong, P., Atsavapranee, P., Benaroya, H. & Wei, T. 2008 Beating of a circular cylinder mounted as an inverted pendulum. J. Fluid Mech. 610, 217247.CrossRefGoogle Scholar
Williamson, C.H.K. & Goverdhan, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413455.CrossRefGoogle Scholar
Yao, W. & Jaiman, R.K. 2017 Model reduction and mechanism for the vortex-induced vibrations of bluff bodies. J. Fluid Mech. 827, 357393.CrossRefGoogle Scholar
Zhang, W., Li, X., Ye, Z. & Jiang, Y. 2015 Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers. J. Fluid Mech. 783, 72102.CrossRefGoogle Scholar
Zhao, J., Leontini, J., Jacono, D.L. & Sheridan, J. 2019 The effect of mass ratio on the structural response of a freely vibration square cylinder oriented at different angles of attack. J. Fluids Struct. 86, 200212.CrossRefGoogle Scholar
Zhao, J., Leontini, J.S., Jacono, D.L. & Sheridan, J. 2014 Fluid-structure interaction of a square cylinder at different angles of attack. J. Fluid Mech. 747, 688721.CrossRefGoogle Scholar
Zhao, M. 2015 Flow-induced vibrations of square and rectangular cylinders at low Reynolds number. Fluid Dyn. Res. 47, 025502.CrossRefGoogle Scholar
Zheng, Q. & Alam, M.M. 2017 Intrinsic features of flow past three square prisms in side-by-side arrangement. J. Fluid Mech. 826, 9961033.CrossRefGoogle Scholar