Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-23T19:37:44.707Z Has data issue: false hasContentIssue false

Interactions between oblique second mode and oblique waves in a high-speed boundary layer

Published online by Cambridge University Press:  19 October 2023

Teng Zhou
Affiliation:
National Key Laboratory of Computational Fluid Dynamics, Beihang University, Beijing 100191, PR China
Zaijie Liu
Affiliation:
National Key Laboratory of Computational Fluid Dynamics, Beihang University, Beijing 100191, PR China
Yuhan Lu
Affiliation:
National Key Laboratory of Computational Fluid Dynamics, Beihang University, Beijing 100191, PR China
Chao Yan*
Affiliation:
National Key Laboratory of Computational Fluid Dynamics, Beihang University, Beijing 100191, PR China
*
Email address for correspondence: yanchao@buaa.edu.cn

Abstract

Interactions between oblique second mode and oblique waves at a high-speed boundary at Mach 4.5 are studied using linear stability theory, nonlinear parabolized stability equations (NPSE) and direct numerical simulation (DNS). Parametric analysis based on the NPSE suggests that the oblique second mode can amplify both the oblique first and second modes, with the former experiencing a higher amplification. Our analysis reveals that the mean-flow distortion and difference mode contribute to this enhancement, with the latter exerting a key influence through the parametric resonance process. Kinetic energy transfer analysis demonstrates that the oblique waves gain energy from the mean flow, rather than from the oblique second mode. Furthermore, we find that the mechanism underlying the interaction between a pair of second oblique waves and a single oblique wave is similar to that between an oblique second mode and an oblique wave, as the steady modes generated by the pair of oblique second modes have a limited impact on the oblique wave. Finally, DNS confirms the validity of two transition paths proposed in this study based on the NPSE results. The first path suggests that a pair of low-amplitude second oblique waves alone are insufficient to cause oblique breakdown, but the introduction of a pair of low-amplitude damping first oblique modes could lead to boundary layer breakdown. The second path involves the formation of a domino-like effect through the combination of different types of oblique waves with the appropriate parameters. These two nonlinear paths can lead to a fully developed turbulent boundary layer.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, N.A. & Kleiser, L. 1996 Subharmonic transition to turbulence in a flat-plate boundary layer at Mach number 4.5. J. Fluid Mech. 317, 301335.CrossRefGoogle Scholar
Al-Salman, A. 2003 Nonlinear modal interactions in a compressible boundary layer. PhD thesis, Imperial College London.Google Scholar
Bradshaw, P. 1977 Efficient implementation of weighted ENO schemes. Annu. Rev. Fluid Mech. 9, 33.CrossRefGoogle Scholar
Chang, C.-L. 2004 Langley stability and transition analysis code (LASTRAC) version 1.2 user manual. Tech. Rep. NASA/TM-2004-213233. NASA Langley Research Center.Google Scholar
Chang, C.-L. & Malik, M.R. 1994 Oblique-mode breakdown and secondary instability in supersonic boundary layers. J. Fluid Mech. 273, 323360.CrossRefGoogle Scholar
Chen, X., Zhu, Y. & Lee, C. 2017 Interactions between second mode and low-frequency waves in a hypersonic boundary layer. J. Fluid Mech. 820, 693735.10.1017/jfm.2017.233CrossRefGoogle Scholar
Coles, D. 1956 The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1 (2), 191226.CrossRefGoogle Scholar
Craig, S.A., Humble, R.A., Hofferth, J.W. & Saric, W.S. 2019 Nonlinear behaviour of the Mack mode in a hypersonic boundary layer. J. Fluid Mech. 872, 7499.CrossRefGoogle Scholar
Fasel, H.F., Thumm, A. & Bestek, H. 1993 Direct numerical simulation of transition in supersonic boundary layers: oblique breakdown. In Fluids Engineering Conference, p. 77. ASME.Google Scholar
Fedorov, A.V. 2003 Receptivity of a high-speed boundary layer to acoustic disturbances. J. Fluid Mech. 491, 101129.CrossRefGoogle Scholar
Fedorov, A.V., Ryzhov, A.A., Soudakov, V.G. & Utyuzhnikov, S.V. 2013 Receptivity of a high-speed boundary layer to temperature spottiness. J. Fluid Mech. 722, 533553.10.1017/jfm.2013.111CrossRefGoogle Scholar
Franko, K.J. & Lele, S.K. 2013 Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers. J. Fluid Mech. 730, 491532.10.1017/jfm.2013.350CrossRefGoogle Scholar
Franko, K.J. & Lele, S. 2014 Effect of adverse pressure gradient on high speed boundary layer transition. Phys. Fluids 26 (2), 024106.10.1063/1.4864337CrossRefGoogle Scholar
Görtler, H. 1954 On the Three-Dimensional Instability of Laminar Boundary Layers on Concave Walls, vol. 1375. National Advisory Commitee for Aeronautics.Google Scholar
Griffin, K.P., Fu, L. & Moin, P. 2021 Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. Proc. Natl Acad. Sci. USA 118 (34), e2111144118.CrossRefGoogle ScholarPubMed
Guo, P., Shi, F., Gao, Z., Jiang, C., Lee, C.-H. & Wen, C. 2022 Heat transfer and behavior of the Reynolds stress in Mach 6 boundary layer transition induced by first-mode oblique waves. Phys. Fluids 34 (10), 104116.CrossRefGoogle Scholar
Hader, C. & Fasel, H.F. 2019 Direct numerical simulations of hypersonic boundary-layer transition for a flared cone: fundamental breakdown. J. Fluid Mech. 869, 341384.CrossRefGoogle Scholar
Hajj, M.R., Miksad, R.W. & Powers, E.J. 1993 Fundamental–subharmonic interaction: effect of phase relation. J. Fluid Mech. 256, 403426.CrossRefGoogle Scholar
Hartman, A.B., Hader, C. & Fasel, H.F. 2021 Nonlinear transition mechanism on a blunt cone at Mach 6: oblique breakdown. J. Fluid Mech. 915, R2.CrossRefGoogle Scholar
Harvey, W.D. 1978 Influence of free-stream disturbances on boundary-layer transition. NASA Tech. Memorandum 78635. National Aeronautics and Space Administration Scientific and Technical Information Office.Google Scholar
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20 (1), 487526.CrossRefGoogle Scholar
Husmeier, F. & Fasel, H.F. 2007 Numerical investigations of hypersonic boundary layer transition for circular cones. In 18th AIAA Computational Fluid Dynamics Conference, p. 289. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Jahanbakhshi, R. & Zaki, T.A. 2019 Nonlinearly most dangerous disturbance for high-speed boundary-layer transition. J. Fluid Mech. 876, 87121.CrossRefGoogle Scholar
Jiang, G.S. & Shu, C.W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202.CrossRefGoogle Scholar
Kachanov, Y.S. 1994 Physical mechanisms of laminar-boundary-layer transition. Annu. Rev. Fluid Mech. 26 (1), 411482.CrossRefGoogle Scholar
Leinemann, M., Hader, C. & Fasel, H.F. 2020 Direct numerical simulations of the nonlinear transition regime on a flat plate at Mach 6. In AIAA Scitech 2020 Forum, p. 0586. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Leinemann, M., Hader, C. & Fasel, H.F. 2021 Direct numerical simulations of the nonlinear boundary layer transition regime on a flat plate at Mach 6. In AIAA Scitech 2021 Forum, p. 1739. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Li, X., Tong, F.-L., Yu, C.-P. & Li, X.-L. 2019 Statistical analysis of temperature distribution on vortex surfaces in hypersonic turbulent boundary layer. Phys. Fluids 31 (10), 106101.CrossRefGoogle Scholar
Li, X.-L., Fu, D.-X. & Ma, Y. 2010 a Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack. Phys. Fluids 22 (2), 025105.CrossRefGoogle Scholar
Li, X.-L., Fu, D.-X., Ma, Y.-W. & Liang, X. 2010 b Development of high accuracy CFD software Hoam-OpenCFD. e-Sci. Technol. Appl. 1, 5359.Google Scholar
Li, X.-L., Leng, Y. & He, Z.-W. 2013 Optimized sixth-order monotonicity-preserving scheme by nonlinear spectral analysis. Intl J. Numer. Meth. Fluids 73 (6), 560577.CrossRefGoogle Scholar
Liu, J. & Zhang, C. 2019 The fundamental secondary instability of the primary Mack mode in hypersonic boundary layers on flat plates. Adv. Appl. Math. Mech. 11, 559570.Google Scholar
Mack, L.M. 1984 Boundary-layer linear stability theory. Tech. Rep. AGARD 709. California Institute of Technology, Jet Propulsion Laboratory.Google Scholar
Maestrello, L., Bayliss, A. & Krishnan, R. 1991 On the interaction between first- and second-mode waves in a supersonic boundary layer. Phys. Fluids A 3 (12), 30143020.CrossRefGoogle Scholar
Mayer, C.S.J., Von Terzi, D.A. & Fasel, H.F. 2011 Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3. J. Fluid Mech. 674, 542.CrossRefGoogle Scholar
Meersman, J.A., Hader, C. & Fasel, H.F. 2021 Numerical investigation of nonlinear boundary-layer transition for cones at Mach 6. AIAA J. 59 (6), 19401952.CrossRefGoogle Scholar
Morkovin, M.V. 1969 On the many faces of transition. In Viscous Drag Reduction: Proceedings of the Symposium on Viscous Drag Reduction held at the LTV Research Center, pp. 1–31. Springer.CrossRefGoogle Scholar
Ng, L.L. & Erlebacher, G. 1992 Secondary instabilities in compressible boundary layers. Phys. Fluids A 4 (4), 710726.CrossRefGoogle Scholar
Orszag, S.A. & Patera, A.T. 1983 Secondary instability of wall-bounded shear flows. J. Fluid Mech. 128, 347385.CrossRefGoogle Scholar
Pruett, C.D. & Chang, C.-L. 1995 Spatial direct numerical simulation of high-speed boundary-layer flows. Part 2. Transition on a cone in Mach 8 flow. Theor. Comput. Fluid Dyn. 7 (5), 397424.CrossRefGoogle Scholar
Ren, J. & Fu, S. 2014 Competition of the multiple Görtler modes in hypersonic boundary layer flows. Sci. China-Phys. Mech. Astron. 57 (6), 11781193.CrossRefGoogle Scholar
Ren, J., Fu, S. & Hanifi, A. 2016 Stabilization of the hypersonic boundary layer by finite-amplitude streaks. Phys. Fluids 28 (2), 024110.CrossRefGoogle Scholar
Schneider, S.P. 1999 Flight data for boundary-layer transition at hypersonic and supersonic speeds. J. Spacecr. Rockets 36 (1), 820.CrossRefGoogle Scholar
Sivasubramanian, J. & Fasel, H.F. 2015 Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown. J. Fluid Mech. 768, 175218.CrossRefGoogle Scholar
Thumm, A. 1991 Numerische Untersuchungen zum laminar-turbulenten Strömungsumschlag in transsonischen Grenzschichtströmungen. PhD thesis, University of Stuttgart.Google Scholar
Unnikrishnan, S. & Gaitonde, D.V. 2019 First-mode-induced nonlinear breakdown in a hypersonic boundary layer. Comput. Fluids 191, 104249.CrossRefGoogle Scholar
Unnikrishnan, S. & Gaitonde, D.V. 2020 Linear, nonlinear and transitional regimes of second-mode instability. J. Fluid Mech. 905, A25.CrossRefGoogle Scholar
Van Driest, E.R. 1951 Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18 (3), 145160.CrossRefGoogle Scholar
White, F.M. 2006 Viscous Fluid Flow. McGraw-Hill.Google Scholar
Yu, M. & Luo, J. 2014 Nonlinear interaction mechanisms of disturbances in supersonic flat-plate boundary layers. Sci. China Phys. Mech. Astron. 57, 21412151.CrossRefGoogle Scholar
Zaki, T.A. & Durbin, P.A. 2005 Mode interaction and the bypass route to transition. J. Fluid Mech. 531, 85111.CrossRefGoogle Scholar
Zaki, T.A. & Durbin, P.A. 2006 Continuous mode transition and the effects of pressure gradient. J. Fluid Mech. 563, 357388.CrossRefGoogle Scholar
Zhang, C. & Luo, J. 2017 Selective enhancement of oblique waves caused by finite amplitude second mode in supersonic boundary layer. Appl. Math. Mech. 38 (8), 11091126.CrossRefGoogle Scholar
Zhang, C., Zhu, Y., Chen, X., Yuan, H., Wu, J., Chen, S., Lee, C. & Gad-el Hak, M. 2015 Transition in hypersonic boundary layers. AIP Adv. 5 (10), 107137.CrossRefGoogle Scholar
Zhang, C.-H., Tang, Q. & Lee, C.-B. 2013 Hypersonic boundary-layer transition on a flared cone. Acta Mechanica Sin. 29, 4854.CrossRefGoogle Scholar
Zhao, R., Wen, C., Zhou, Y., Tu, G.-H. & Lei, J.-M. 2022 Review of acoustic metasurfaces for hypersonic boundary layer stabilization. Prog. Aerosp. Sci. 130, 100808.CrossRefGoogle Scholar
Zhou, T., Liu, Z., Lu, Y., Kang, D. & Yan, C. 2022 a Control of oblique breakdown in a supersonic boundary layer employed a local cooling strip. J. Fluid Mech. 949, A4.CrossRefGoogle Scholar
Zhou, T., Liu, Z., Lu, Y., Wang, Y. & Yan, C. 2022 b Direct numerical simulation of complete transition to turbulence via first- and second-mode oblique breakdown at a high-speed boundary layer. Phys. Fluids 34 (7), 074101.CrossRefGoogle Scholar
Zhou, T., Liu, Z. & Yan, C. 2023 Linear and nonlinear instabilities of a high-speed boundary layer on porous coating. AIAA J. 61 (1), 489496.CrossRefGoogle Scholar
Zhou, T., Lu, Y., Liu, Z. & Yan, C. 2021 Direct numerical simulation of control of oblique breakdown in a supersonic boundary layer using a local cooling strip. Phys. Fluids 33 (8), 084101.CrossRefGoogle Scholar
Zhu, Y., Chen, X., Wu, J., Chen, S., Lee, C. & Gad-el Hak, M. 2018 Aerodynamic heating in transitional hypersonic boundary layers: role of second-mode instability. Phys. Fluids 30 (1), 011701.CrossRefGoogle Scholar
Zhu, Y., Zhang, C., Chen, X., Yuan, H., Wu, J., Chen, S., Lee, C. & Gad-el Hak, M. 2016 Transition in hypersonic boundary layers: role of dilatational waves. AIAA J. 54 (10), 30.CrossRefGoogle Scholar