Skip to main content Accessibility help

Interaction of viscous free-surface flows with topography

  • Edward M. Hinton (a1) (a2), Andrew J. Hogg (a3) and Herbert E. Huppert (a2)


The interaction of gravitationally driven, free-surface flows of viscous fluid with topographic features is investigated theoretically. The motion is studied in the regime where the depth of the flow is much smaller than the streamwise extent of the topography. A lubrication model of the motion is developed, integrated numerically and analysed asymptotically. For small mounds, it is shown that the flow surmounts the obstacles, but for larger mounds the flow is deflected around it and can form dry zones in its wake into which fluid does not flow, as well as forming deeper ponded regions upstream. Which of these phenomena prevails is shown to depend upon the amplitude of the mound height and the thickness of the oncoming flow relative to the streamwise length scale over which the topography varies. By using numerical and asymptotic results, we demonstrate that relatively wide mounds lead to the development of deep ponds of material upstream, which may lead to flow overtopping if the mound is not sufficiently high. These insights can be used to inform the design of barriers that defend built infrastructures from lava flows, and it is shown how this model can also provide an upper bound on the force exerted by the flow on them.


Corresponding author

Email address for correspondence:


Hide All
Balmforth, N. J., Burbidge, A. S., Craster, R. V., Salzig, J. & Shen, A. 2000 Visco-plastic models of isothermal lava domes. J. Fluid Mech. 403, 3765.
Balmforth, N. J., Craster, R. V. & Sassi, R. 2002 Shallow viscoplastic flow on an inclined plane. J. Fluid Mech. 470, 129.
Barberi, F. & Carapezza, M. L. 2013 The Control of Lava Flows at Mt. Etna. American Geophysical Union (AGU).
Batchelor, G. K. 1965 An Introduction to Fluid Dynamics. Cambridge University Press.
Baxter, S. J., Power, H., Cliffe, K. A. & Hibberd, S. 2009 Three-dimensional thin film flow over and around an obstacle on an inclined plane. Phys. Fluids 21 (3), 032102.
Blyth, M. G. & Pozrikidis, C. 2006 Film flow down an inclined plane over a three-dimensional obstacle. Phys. Fluids 18 (5), 052104.
Cashman, K. V., Kerr, R. C. & Griffiths, R. W. 2006 A laboratory model of surface crust formation and disruption on lava flows through non-uniform channels. Bull. Volcanol. 68 (7–8), 753770.
Chirico, G. D., Favalli, M., Papale, P., Boschi, E., Pareschi, M. T. & Mamou-Mani, A. 2009 Lava flow hazard at nyiragongo volcano, drc. Bull. Volcanol. 71 (4), 375387.
Colombrita, R. 1984 Methodology for the construction of earth barriers to divert lava flows: the Mt. Etna 1983 eruption. Bull. Volcanol. 47 (4), 10091038.
Dietterich, H. R., Cashman, K. V., Rust, A. C. & Lev, E. 2015 Diverting lava flows in the lab. Nat. Geosci. 8 (7), 494496.
Edwards, B. R., Karson, J., Wysocki, R., Lev, E., Bindeman, I. & Kueppers, U. 2013 Insights on lava–ice/snow interactions from large-scale basaltic melt experiments. Geology 41 (8), 851854.
Fujita, E., Hidaka, M., Goto, A. & Umino, S. 2009 Simulations of measures to control lava flows. Bull. Volcanol. 71 (4), 401408.
Gaskell, P. H., Jimack, P. K., Sellier, M., Thompson, H. M. & Wilson, M. C. T. 2004 Gravity-driven flow of continuous thin liquid films on non-porous substrates with topography. J. Fluid Mech. 509, 253280.
Glenn, J. W. 1955 The creep of polycrystalline ice. Proc. R. Soc. Lond. A 228 (1175), 519538.
Griffiths, R. W. 2001 The dynamics of lava flows. Annu. Rev. Fluid Mech. WP01/05 (1), 425.
Hansen, E. B. 1986 Free surface stokes flow over an obstacle. In Boundary Elements VIII, pp. 783792. Springer.
Hinch, E. J. 1991 Perturbation Methods, Cambridge Texts in Applied Mathematics. Cambridge University Press.
Hinton, E. M., Hogg, A. J. & Huppert, H. E.2019 Viscous free-surface flows past cylinders. Phys. Rev. Fluids (submitted).
Huppert, H. E. 1982a Flow and instability of a viscous current down a slope. Nature 300 (5891), 427429.
Huppert, H. E. 1982b Viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 4358.
Hutter, K. 1982 Dynamics of Glaciers, pp. 245256. Springer.
Kerr, R. C., Griffiths, R. W. & Cashman, K. V. 2006 Formation of channelized lava flows on an unconfined slope. J. Geophys. Res. 111 (10), 113.
Kistler, S. F. & Schweizer, P. M. 1997 Liquid Film Coating: Scientific Principles and their Technological Implications. Springer.
Lister, J. R. 1992 Viscous flows down an inclined plane from point and line sources. J. Fluid Mech. 242, 631653.
Moore, H. J.1982 A geologic evaluation of proposed lava diversion barriers for the NOAA Mauna Loa Observatory, Mauna Loa volcano, Hawaii. In U.S. Geol. Surv. Open-File Report 82-314, pp. 1–26. USGS.
Pozrikidis, C. & Thoroddsen, S. T. 1991 The deformation of a liquid film flowing down an inclined plane wall over a small particle arrested on the wall. Phys. Fluids A 3 (11), 25462558.
Pritchard, W. G., Scott, L. R. & Tavener, S. J. 1992 Numerical and asymptotic methods for certain viscous free-surface flows. Phil. Trans. R. Soc. Lond. A 340 (1656), 145.
Rignot, E., Mouginot, J. & Scheuchl, B. 2011 Ice flow of the antarctic ice sheet. Science 333 (6048), 14271430.
Scifoni, S., Coltelli, M., Marsella, M., Proietti, C., Napoleoni, Q., Vicari, A. & Del Negro, C. 2010 Mitigation of lava flow invasion hazard through optimized barrier configuration aided by numerical simulation: the case of the 2001 Etna eruption. J. Volcanol. Geotherm. Res. 192 (1–2), 1626.
Sparks, R. S. J., Pinkerton, H. & Hulme, G. 1976 Classification and formation of lava levees on Mount Etna, Sicily. Geology 4 (5), 269271.
Stillwagon, L. E. & Larson, R. G. 1988 Fundamentals of topographic substrate leveling. J. Appl. Phys. 63 (11), 52515258.
Takagi, D. & Huppert, H. E. 2010 Initial advance of long lava flows in open channels. J. Volcanol. Geotherm. Res. 195 (2-4), 121126.
Williams, R. & Moore, J.1983 Man against volcano: the eruption on Heimaey, Vestmennaeyjar, Iceland. In Report USGS General Interest Publication, pp. 1–26. USGS.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Interaction of viscous free-surface flows with topography

  • Edward M. Hinton (a1) (a2), Andrew J. Hogg (a3) and Herbert E. Huppert (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed