Skip to main content Accessibility help
×
Home

Interaction of a strong shockwave with a gas bubble in a liquid medium: a numerical study

  • N. A. Hawker (a1) and Y. Ventikos (a1)

Abstract

The interaction of a shockwave with a gas bubble in a liquid medium is of interest in a variety of areas, e.g. shockwave lithotripsy, cavitation damage and the study of sonoluminescence. This study employs a high-resolution front-tracking framework to numerically investigate this phenomenon. The modelling paradigm is validated extensively and then used to explore the parametric space of interest. We provide a comprehensive qualitative analysis of the collapse process, which we categorize into three phases, based on the principal feature dominating each phase. This results in the characterization of numerous previously unidentified features important in the evolution of the process and in the emergence of peak temperatures and pressures. For example, we discover that the peak pressure does not occur as a result of the impact of the main transverse jet (also called the re-entrant jet) but later in the collapse. We perform fully three-dimensional simulations, showing that three-dimensional instabilities are limited to the small-scale details of collapse, and continue by comparing collapse of cylindrical and spherical bubbles. We detail a parametric investigation varying the shock strength from 100 MPa to 100 GPa. A counter-intuitive discovery is that the maximum gas density decreases with increasing shock strength.

Copyright

Corresponding author

Email address for correspondence: yiannis.ventikos@eng.ox.ac.uk

References

Hide All
1. Arora, M., Junge, L. & Ohl, C. D. 2005 Cavitation cluster dynamics in shock-wave lithotripsy. Part 1. Free field. Ultrasound Med. Biol. 31 (6), 827839.
2. Ball, G. J., Howell, B. P., Leighton, T. G. & Schofield, M. J. 2000 Shock-induced collapse of a cylindrical air cavity in water: a free-Lagrange simulation. Shock Waves 10 (4), 265276.
3. Barber, B. P., Hiller, R. A., Lofstedt, R., Putterman, S. J. & Weninger, K. R. 1997 Defining the unknowns of sonoluminescence. Phys. Rep. 281 (2), 65143.
4. Benjamin, T. B. & Ellis, A. T. 1966 The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil. Trans. R. Soc. Lond. A 260 (1110), 221240.
5. Bjerknes, V. F. K. 1906 Fields of Force. Columbia University Press.
6. Bourne, N. K. 2002 On the collapse of cavities. Shock Waves 11 (6), 447455.
7. Bourne, N. K. & Field, J. E. 1992 Shock-induced collapse of single cavities in liquids. J. Fluid Mech. 244, 225240.
8. Bourne, N. K. & Field, J. E. 1999 Shock-induced collapse and luminescence by cavities. Phil. Trans. R. Soc. Lond. A 357, 295311.
9. Bourne, N. K. & Milne, A. M. 2003 The temperature of a shock-collapsed cavity. Proc. R. Soc. Lond. A 459 (2036), 18511861.
10. Bowden, F. & Gurton, O. 1948 Birth and growth of the explosion in solids initiated by impact. Nature 161, 348.
11. Brackbil, J., Kothe, D. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100, 335354.
12. Brenner, M., Hilgenfeldt, S. & Lohse, D. 2002 Single-bubble sonoluminescence. Rev. Mod. Phys. 74 (2), 425484.
13. Brujan, E. A., Keen, G. S., Vogel, A. & Blake, J. R. 2002 The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14 (1), 8592.
14. Chang, C.-H. & Liou, M.-S. 2007 A robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM-up scheme. J. Comput. Phys. 225 (1), 840873.
15. Colella, P. 1985 A direct Eulerian MUSCL scheme for gas dynamics. SIAM J. Sci. Stat. Comput. 6 (1), 104117.
16. Coley, G. D. & Field, J. E. 1973 The role of cavities in the initiation and growth of explosion in liquids. Proc. R. Soc. Lond. A 335 (1600), 6786.
17. Cook, S. S. 1928 Erosion by water-hammer. Proc. R. Soc. Lond. A 119 (783), 481488.
18. Courant, R., Friedrichs, K. & Lewy, H. 1967 On the partial difference equations of mathematical physics. IBM J. Res. Dev. 11 (2), 215234.
19. Dear, J. & Field, J. E. 1988 A study of the collapse of arrays of cavities. J. Fluid Mech. 190, 409425.
20. Didenko, Y. T. & Gordeychuk, T. 2000 Multibubble sonoluminescence spectra of water which resemble single-bubble sonoluminescence. Phys. Rev. Lett. 84 (24), 56405643.
21. Ding, Z. & Gracewski, S. M. 1996 The behaviour of a gas cavity impacted by a weak or strong shock wave. J. Fluid Mech. 309, 183209.
22. Du, J., Fix, B., Glimm, J., Jia, X., Li, X., Li, Y. & Wu, L. 2006 A simple package for front tracking. J. Comput. Phys. 213 (2), 613628.
23. Fix, B., Glimm, J., Kaufman, R., Li, X. & Wu, L. 2008 Verification and validation of FronTier code and application to fluid interfacial instabilities. Phys. Scr. T132, 16.
24. Flannigan, D. J. & Suslick, K. S. 2005 Plasma formation and temperature measurement during single-bubble cavitation. Nature 434, 5255.
25. Frenzel, H. & Schultes, H. 1934 Luminescenz im ultraschallbeschickten Wasser. Z. Phys. Chem. 27b, 421.
26. Gaitan, D. F., Crum, L. A., Church, C. C. & Roy, R. A. 1992 Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J. Acoust. Soc. Am. 91 (6), 31663183.
27. Gilmore, F. R. 1952. The growth or collapse of a spherical bubble in a viscous compressible liquid. Hydrodynamics Lab. Rep. 26-4. California Institute of Technology.
28. Glimm, J. 1988 The interaction of nonlinear hyperbolic waves. Commun. Pure Appl. Maths 41 (5), 569590.
29. Glimm, J. 1998 Front tracking in two and three dimensions. Comput. Maths Applics. 35 (7), 111.
30. Glimm, J., Grove, J. W., Li, X., Shyue, K.-M., Zeng, Y. & Zhang, Q. 1998 Three-dimensional front tracking. SIAM J. Sci. Comput. 19 (3), 703723.
31. Glimm, J., Grove, J. W., Li, X. & Tan, D. C. 2000 Robust computational algorithms for dynamic interface tracking in three dimensions. SIAM J. Sci. Comput. 21 (6), 22402256.
32. Glimm, J., Grove, J. W., Li, X. & Zhao, N. 1999 Simple front tracking. Contemp. Maths 238, 133149.
33. Glimm, J., Grove, J. W., Lindquist, B., McBryan, O. A. & Tryggvason, G. 1988 The bifurcation of tracked scalar waves. SIAM J. Sci. Stat. Comput. 9 (1), 6179.
34. Glimm, J., Grove, J. W. & Zhang, Y. 2002 Interface tracking for axisymmetric flows. SIAM J. Sci. Comput. 24 (1), 208236.
35. Glimm, J., Isaacson, E., Marchesin, D. & McBryan, O. A. 1981 Front tracking for hyperbolic systems. Adv. Appl. Maths 2, 91119.
36. Glimm, J., Li, X., Liu, Y., Xu, Z. & Zhao, N. 2003 Conservative front tracking with improved accuracy. SIAM J. Numer. Anal. 41 (5), 19261947.
37. Glimm, J. & McBryan, O. A. 1985 A computational model for interfaces. Adv. Appl. Maths 6, 422435.
38. Glimm, J., McBryan, O. A., Menikoff, R. & Sharp, D. H. 1986 Front tracking applied to Rayleigh–Taylor instability. SIAM J. Sci. Stat. Comput. 7 (1), 230251.
39. Grove, J. W. 1994 Applications of front tracking to the simulation of shock refractions and unstable mixing. Appl. Numer. Maths 14 (1–3), 213237.
40. Grove, J. W. & Menikoff, R. 1990 Anomalous reflection of a shock wave at a fluid interface. J. Fluid Mech. 219, 313336.
41. Haas, J. F. & Sturtevant, B. 1987 Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 4176.
42. Haller, K. K., Poulikakos, D., Ventikos, Y. & Monkewits, P. 2003 Shock wave formation in droplet impact on a rigid surface: lateral liquid motion and multiple wave structure in the contact line region. J. Fluid Mech. 490, 114.
43. Haller, K. K., Ventikos, Y. & Poulikakos, D. 2003 Wave structure in the contact line region during high speed droplet impact on a surface: solution of the Riemann problem for the stiffened gas equation of state. J. Appl. Phys. 93 (5), 30903097.
44. Haller, K. K., Ventikos, Y., Poulikakos, D. & Monkewitz, P. 2002 Computational study of high-speed liquid droplet impact. J. Appl. Phys. 92 (5), 28212828.
45. Hansson, I., Kedrinskii, V. & Morch, K. A. 1982 On the dynamics of cavity clusters. J. Phys. D: Appl. Phys. 15 (9), 17251734.
46. Harlow, F. H. & Welch, J. E. 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8 (12), 21822189.
47. Hiller, R. A., Putterman, S. J. & Barber, B. P. 1992 Spectrum of synchronous picosecond sonoluminescence. Phys. Rev. Lett. 69 (8), 11821184.
48. Hirt, C. & Nichols, B. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201225.
49. Jiao, X. & Zha, H. 2008 Consistent computation of first- and second-order differential quantities for surface meshes. In Proceedings of the 2008 ACM Symposium on Solid and Physical Modelling. pp. 159170. ACM.
50. Johnsen, E. & Colonius, T. 2006 Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219 (2), 715732.
51. Johnsen, E. & Colonius, T. 2008 Shock-induced collapse of a gas bubble in shockwave lithotripsy. J. Acoust. Soc. Am. 124 (4), 20112020.
52. Johnsen, E. & Colonius, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.
53. Keller, J. B. & Miksis, M. 1980 Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68 (2), 628633.
54. Klaseboer, E., Fong, S. W., Turangan, C. K., Khoo, B. C., Szeri, A. J., Calvisi, M. L. & Sankin, G. N. et al. 2007 Interaction of lithotripter shockwaves with single inertial cavitation bubbles. J. Fluid Mech. 593, 3356.
55. Kodama, T. & Tomita, Y. 2000 Cavitation bubble behaviour and bubble-shock wave interaction near a gelatin surface as a study of in vivo bubble dynamics. Appl. Phys. B 70 (1), 139149.
56. Kornfeld, M. & Suvorov, L. 1944 On the destructive action of cavitation. J. Appl. Phys. 15, 495506.
57. Kröninger, D., Köhler, K., Kurz, T. & Lauterborn, W. 2010 Particle tracking velocimetry of the flow field around a collapsing cavitation bubble. Exp. Fluids 48 (3), 395408.
58. Lauterborn, W. & Bolle, H. 1975 Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72 (02), 391399.
59. Lauterborn, W. & Kurz, T. 2010 Physics of bubble oscillations. Rep. Prog. Phys. 73 (10) 188.
60. Leighton, T. G., Fedele, F., Coleman, A., McCarthy, C., Ryves, S., Hurrell, A. M. & De Stefano, A. et al. 2008. Clinical studies of real-time monitoring of lithotripter performance using passive acoustic ensors. 2nd International Urolithiasis Research Symposium, pp. 256-277. AIP.
61. Li, X. 1996 Numerical study for the three-dimensional Rayleigh–Taylor Instability through the TVD/AC scheme and parallel computation. J. Comput. Phys. 126 (2), 343355.
62. Lindau, O. & Lauterborn, W. 2003 Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327348.
63. Liu, X., Li, Y., Glimm, J. & Li, X. 2007 A front tracking algorithm for limited mass diffusion. J. Comput. Phys. 222 (2), 644653.
64. Lu, T., Xu, Z., Samulyak, R., Glimm, J. & Ji, X. M. 2008 Dynamics phase boundaries for compressible fluids. SIAM J. Sci. Comput. 30 (2), 895915.
65. Mader, C. L. 1965 Initiation of detonation by the interaction of shocks with density discontinuities. Phys. Fluids 8 (10), 18111816.
66. Matula, T. & Crum, L. A. 1998 Evidence for gas exchange in single-bubble sonoluminescence. Phys. Rev. Lett. 80 (4), 865868.
67. McNamara, W. B., Didenko, Y. T. & Suslick, K. S. 1999 Sonoluminescence temperatures during multi-bubble cavitation. Nature 401 (6755), 772775.
68. Mellen, R. H. 1956 An experimental study of the collapse of a spherical cavity in water. J. Acoust. Soc. Am. 28 (3), 447454.
69. Menikoff, R. & Plohr, B. J. 1989 The Riemann problem for fluid flows of real materials. Rev. Mod. Phys. 61 (1), 75130.
70. Moss, W. C., Clarke, D. B., White, J. W. & Young, D. A. 1994 Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence. Phys. Fluids 6 (9), 29792985.
71. Nagayama, K., Mori, Y., Shimada, K. & Nakahara, M. 2002 Shock Hugoniot compression curve for water up to 1 GPa by using a compressed gas gun. J. Appl. Phys. 91 (1), 476482.
72. Niederhaus, J. H. J., Greenough, J. A., Oakley, J. G., Ranjan, D., Anderson, M. H. & Bonazza, R. 2008 A computational parameter study for the three-dimensional shock–bubble interaction. J. Fluid Mech. 594, 85124.
73. Nigmatulin, R. I., Akhatov, I. S., Topolnikov, A. S., Bolotnova, R. K., Vakhitova, N. K., Lahey, R. T. Jr. & Taleyarkhan, R. P. 2005 Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion. Phys. Fluids 17 (10), 107106.
74. Nourgaliev, R. R., Dinh, T. N. & Theofanous, T. G. 2006 Adaptive characteristics-based matching for compressible multifluid dynamics. J. Comput. Phys. 213 (2), 500529.
75. Pelekasis, N. A. & Tsamopoulos, J. A. 1993a Bjerknes forces between two bubbles. Part 1. Response to a step change in pressure. J. Fluid Mech. 254, 467499.
76. Pelekasis, N. A. & Tsamopoulos, J. A. 1993b Bjerknes forces between two bubbles. Part 2. Response to an oscillatory pressure field. J. Fluid Mech. 254, 501527.
77. Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.
78. Plesset, M. S. 1949 The dynamics of cavitation bubbles. Trans. ASME: J. Appl. Mech. 16 (3), 227282.
79. Plesset, M. S. & Chapman, R. B. 1971 Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47 (2), 283290.
80. Plesset, M. S. & Prosperetti, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9 (1), 145185.
81. Prosperetti, A. 1997 A new mechanism for sonoluminescence. J. Acoust. Soc. Am. 101 (4), 20032007.
82. Quirk, J. J. & Karni, S. 1996 On the dynamics of a shock–bubble interaction. J. Fluid Mech. 318, 129163.
83. Ranjan, D., Niederhaus, J. H. J., Oakley, J. G., Anderson, M. H., Bonazza, R. & Greenough, J. A. 2008 Shock-bubble interactions: features of divergent shock-refraction geometry observed in experiments and simulations. Phys. Fluids 20 (3), 036101.
84. Ray, J., Samtaney, R. & Zabusky, N. J. 2000 Shock interactions with heavy gaseous elliptic cylinders: two leeward-side shock competition modes and a heuristic model for interfacial circulation deposition at early times. Phys. Fluids 12 (3), 707716.
85. Rayleigh, Lord 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34, 9498.
86. Samtaney, R., Ray, J. & Zabusky, N. J. 1998 Baroclinic circulation generation on shock accelerated slow/fast gas interfaces. Phys. Fluids 10 (5), 12171230.
87. Sethian, J. A. 1999 Level Set Methods and Fast Marching Methods. Cambridge University Press.
88. Shapira, D. & Saltmarsh, M. 2002 Nuclear fusion in collapsing bubbles – Is it there? An attempt to repeat the observation of nuclear emissions from sonoluminescence. Phys. Rev. Lett. 89 (10), 25.
89. Storey, B. D. & Szeri, A. J. 2000 Water vapour, sonoluminescence and sonochemistry. Proc. R. Soc. Lond. A 456, 16851709.
90. Suslick, K. S. 1990 Sonochemistry. Science 247 (4949), 14391445.
91. Suslick, K. S., Doktycz, S. & Flint, E. 1990 On the origin of sonoluminescence and sonochemistry. Ultrasonics 28 (5), 280290.
92. Suslick, K. S. & Flannigan, D. J. 2008 Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu. Rev. Phys. Chem. 59, 659683.
93. Takahira, H., Matsuno, T. & Shuto, K. 2008 Numerical investigations of shock–bubble interactions in mercury. Fluid Dyn. Res. 40 (7-8), 510520.
94. Taleyarkhan, R. P., West, C. D., Cho, J. S., Lahey, R. T. Jr., Nigmatulin, R. I. & Block, R. C. 2002 Evidence for nuclear emissions during acoustic cavitation. Science 295 (5561), 18681873.
95. Thompson, L. H. & Doraiswamy, L. K. 1999 Sonochemistry: science and engineering. Ind. Engng Chem. Res. 38 (4), 12151249 American Chemical Society.
96. Tong, R. P., Schiffers, W. P., Shaw, S. J., Blake, J. R. & Emmony, D. C. 1999 The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary. J. Fluid Mech. 380, 339361.
97. Tryggvason, G. 2001 A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169 (2), 708759.
98. Turangan, C. K., Jamaluddin, A. R., Ball, G. J. & Leighton, T. G. 2008 Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water. J. Fluid Mech. 598, 125.
99. Wagner, W. & Pruss, A. 2002 The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31 (2), 387535.
100. Wang, Y. & Chen, Y. 2007 Application of piezoelectric PVDF film to the measurement of impulsive forces generated by cavitation bubble collapse near a solid boundary. Exp. Therm. Fluid Sci. 32 (2), 403414.
101. Weninger, K. R., Camara, C. & Putterman, S. J. 1999 Energy focusing in a converging fluid flow: implications for sonoluminescence. Phys. Rev. Lett. 83 (10), 20812084.
102. Woodward, P. & Colella, P. 1984 The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115173.
103. Wu, C. C. & Roberts, P. H. 1993 Shock-wave propagation in a sonoluminescing gas bubble. Phys. Rev. Lett. 70 (22), 34243427.
104. Xu, Z., Glimm, J., Zhang, Y. & Liu, X. 2007 A multiscale front tracking method for compressible free surface flows. Chem. Engng Sci. 62 (13), 35383548.
105. Yasui, K. 1997 Alternative model of single-bubble sonoluminescence. Phys. Rev. E 56 (6), 67506760.
106. van Leer, B. 1977 Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys. 23 (3), 276299.
107. van Leer, B. 1979 Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101136.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Hawker and Ventikos supplementary movie
1GPa - A 2D simulation of the interaction of 1GPa shockwave in water with a 1mm air bubble. The left hand side shows density and the right hand side shows the pressure, only in the liquid, and the temperature, only in the gas. A numerical schlieren image, visualising magnitude of gradient of density, with a tailored colour and opacity map is overlaid over both, making the shock structures clearer.

 Video (12.9 MB)
12.9 MB
VIDEO
Movies

Hawker and Ventikos supplementary movie
1GPa - A 2D simulation of the interaction of 1GPa shockwave in water with a 1mm air bubble. The left hand side shows density and the right hand side shows the pressure, only in the liquid, and the temperature, only in the gas. A numerical schlieren image, visualising magnitude of gradient of density, with a tailored colour and opacity map is overlaid over both, making the shock structures clearer.

 Video (8.7 MB)
8.7 MB
VIDEO
Movies

Hawker and Ventikos supplementary movie
1GPa Vorticity - A 2D simulation of the interaction of 1GPa shockwave in water with a 1mm air bubble. The left hand side shows a numerical schlieren image whereas the right hand side shows vorticity.

 Video (8.1 MB)
8.1 MB
VIDEO
Movies

Hawker and Ventikos supplementary movie
1GPa Vorticity - A 2D simulation of the interaction of 1GPa shockwave in water with a 1mm air bubble. The left hand side shows a numerical schlieren image whereas the right hand side shows vorticity.

 Video (8.2 MB)
8.2 MB
VIDEO
Movies

Hawker and Ventikos supplementary movie
100GPa - A 2D simulation of the interaction of 100GPa shockwave in water with a 1mm air bubble. The left hand side shows density and the right hand side shows the pressure, only in the liquid, and the temperature, only in the gas. A numerical schlieren image, visualising magnitude of gradient of density, with a tailored colour and opacity map is overlaid over both, making the shock structures clearer.

 Video (15.6 MB)
15.6 MB
VIDEO
Movies

Hawker and Ventikos supplementary movie
100GPa - A 2D simulation of the interaction of 100GPa shockwave in water with a 1mm air bubble. The left hand side shows density and the right hand side shows the pressure, only in the liquid, and the temperature, only in the gas. A numerical schlieren image, visualising magnitude of gradient of density, with a tailored colour and opacity map is overlaid over both, making the shock structures clearer.

 Video (13.1 MB)
13.1 MB
VIDEO
Movies

Hawker and Ventikos supplementary movie
100MPa - A 2D simulation of the interaction of 100MPa shockwave in water with a 1mm air bubble. The left hand side shows density and the right hand side shows the pressure, only in the liquid, and the temperature, only in the gas. A numerical schlieren image, visualising magnitude of gradient of density, with a tailored colour and opacity map is overlaid over both, making the shock structures clearer.

 Video (24.6 MB)
24.6 MB
VIDEO
Movies

Hawker and Ventikos supplementary movie
100MPa - A 2D simulation of the interaction of 100MPa shockwave in water with a 1mm air bubble. The left hand side shows density and the right hand side shows the pressure, only in the liquid, and the temperature, only in the gas. A numerical schlieren image, visualising magnitude of gradient of density, with a tailored colour and opacity map is overlaid over both, making the shock structures clearer.

 Video (16.8 MB)
16.8 MB

Interaction of a strong shockwave with a gas bubble in a liquid medium: a numerical study

  • N. A. Hawker (a1) and Y. Ventikos (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed