Abe, H. & Antonia, R. A.
2009
Near-wall similarity between velocity and scalar fluctuations in a turbulent channel flow. Phys. Fluids
21 (2), 025109.
Abe, H. & Antonia, R. A.
2016
Relationship between the energy dissipation function and the skin friction law in a turbulent channel flow. J. Fluid Mech.
798, 140–164.
Abe, H. & Antonia, R. A.
2017
Relationship between the heat transfer law and the scalar dissipation function in a turbulent channel flow. J. Fluid Mech.
830, 300–325.
Abe, H., Kawamura, H. & Matsuo, Y.
2001
Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence. Trans. ASME J. Fluids Engng
123 (2), 382–393.
Afzal, N.
1982
Fully developed turbulent flow in a pipe: an intermediate layer. Arch. Appl. Mech.
52 (6), 355–377.
Afzal, N.
1984
Mesolayer theory for turbulent flows. AIAA J.
22 (3), 437–439.
Bernardini, M., Pirozzoli, S. & Orlandi, P.
2014
Velocity statistics in turbulent channel flow up to Re
_{𝜏} = 4000. J. Fluid Mech.
742, 171–191.
Cantwell, B. J.
1981
Organized motion in turbulent flow. Annu. Rev. Fluid Mech.
13 (1), 457–515.
De Graaff, D. B. & Eaton, J. K.
2000
Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech.
422, 319–346.
Eggels, J. G. M., Unger, F., Weiss, M. H., Westerweel, J., Adrian, R. J., Friedrich, R. & Nieuwstadt, F. T. M.
1994
Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech.
268, 175–210.
El Khoury, G. K., Schlatter, P., Noorani, A., Fischer, P. F., Brethouwer, G. & Johansson, A. V.
2013
Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers. Flow Turbul. Combust.
91 (3), 475–495.
Fernholz, H. H. & Finley, P. J.
1996
The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data. Prog. Aerosp. Sci.
32 (4), 245–311.
Fife, P., Klewicki, J., McMurtry, P. & Wei, T.
2005a
Multiscaling in the presence of indeterminacy: wall-induced turbulence. Multiscale Model. Simul.
4 (3), 936–959.
Fife, P., Wei, T., Klewicki, J. & McMurtry, P.
2005b
Stress gradient balance layers and scale hierarchies in wall-bounded turbulent flows. J. Fluid Mech.
532, 165–189.
Fukagata, K., Iwamoto, K. & Kasagi, N.
2002
Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids
14 (11), L73–L76.
Gad-el Hak, M. & Bandyopadhyay, P. R.
1994
Reynolds number effects in wall-bounded turbulent flows. Appl. Mech. Rev.
47 (8), 307–365.
Hoyas, S. & Jiménez, J.
2008
Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids
20 (10), 101511.
Hultmark, M., Vallikivi, M., Bailey, S. & Smits, A.
2012
Turbulent pipe flow at extreme Reynolds numbers. Phys. Rev. Lett.
108 (9), 094501.
Hultmark, M., Vallikivi, M., Bailey, S. & Smits, A.
2013
Logarithmic scaling of turbulence in smooth-and rough-wall pipe flow. J. Fluid Mech.
728, 376–395.
Iwamoto, K., Suzuki, Y. & Kasagi, N.
2002
Reynolds number effect on wall turbulence: toward effective feedback control. Intl J. Heat Fluid Flow
23 (5), 678–689.
Jiménez, J.
2013
Near-wall turbulence. Phys. Fluids
25 (10), 101302.
Jiménez, J., Hoyas, S., Simens, M. P. & Mizuno, Y.
2009
Comparison of turbulent boundary layers and channels from direct numerical simulation. In TSFP Digital Library Online. Begel House Inc.
Jiménez, J., Hoyas, S., Simens, M. P. & Mizuno, Y.
2010
Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech.
657, 335–360.
Klewicki, J. C.
2010
Reynolds number dependence, scaling, and dynamics of turbulent boundary layers. Trans. ASME J. Fluids Engng
132 (9), 094001.
Laadhari, F.
2007
Reynolds number effect on the dissipation function in wall-bounded flows. Phys. Fluids
19 (3), 038101.
Lee, M. & Moser, R. D.
2015
Direct numerical simulation of turbulent channel flow up to Re = 5200. J. Fluid Mech.
774, 395–415.
Long, R. R. & Chen, T.-C.
1981
Experimental evidence for the existence of the mesolayer in turbulent systems. J. Fluid Mech.
105, 19–59.
Marusic, I., Baars, W. J. & Hutchins, N.
2017
Scaling of the streamwise turbulence intensity in the context of inner-outer interactions in wall turbulence. Phys. Rev. Fluids
2 (10), 100502.
Marusic, I., Mathis, R. & Hutchins, N.
2010a
High Reynolds number effects in wall turbulence. Intl J. Heat Fluid Flow
31 (3), 418–428.
Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R.
2010b
Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids
22 (6), 065103.
Mathis, R., Hutchins, N. & Marusic, I.
2009a
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech.
628, 311–337.
Mathis, R., Monty, J. P., Hutchins, N. & Marusic, I.
2009b
Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows. Phys. Fluids
21 (11), 111703.
Monty, J. P., Hutchins, N., Ng, H., Marusic, I. & Chong, M. S.
2009
A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech.
632, 431–442.
Nagib, H. M. & Chauhan, K. A.
2008
Variations of von Kármán coefficient in canonical flows. Phys. Fluids
20 (10), 101518.
Ng, H., Monty, J., Hutchins, N., Chong, M. S. & Marusic, I.
2011
Comparison of turbulent channel and pipe flows with varying Reynolds number. Exp. Fluids
51 (5), 1261–1281.
Orlandi, P.
1997
Helicity fluctuations and turbulent energy production in rotating and non-rotating pipes. Phys. Fluids
9 (7), 2045–2056.
Panton, R. L.
2001
Overview of the self-sustaining mechanisms of wall turbulence. Prog. Aerosp. Sci.
37 (4), 341–383.
Perry, A. E., Marusic, I. & Jones, M. B.
2002
On the streamwise evolution of turbulent boundary layers in arbitrary pressure gradients. J. Fluid Mech.
461, 61–91.
Pirozzoli, S., Bernardini, M. & Orlandi, P.
2016
Passive scalars in turbulent channel flow at high Reynolds number. J. Fluid Mech.
788, 614–639.
Pope, S. B.
2001
Turbulent Flows. Cambridge University Press.
Renard, N. & Deck, S.
2016
A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer. J. Fluid Mech.
790, 339–367.
Robinson, S. K.
1991
Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech.
23 (1), 601–639.
Schlatter, P. & Örlü, R.
2010
Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech.
659, 116–126.
Simens, M. P., Jiménez, J., Hoyas, S. & Mizuno, Y.
2009
A high-resolution code for turbulent boundary layers. J. Comput. Phys.
228 (11), 4218–4231.
Smits, A. J. & Marusic, I.
2013
Wall-bounded turbulence. Phys. Today
66 (9), 25–30.
Smits, A. J., McKeon, B. J. & Marusic, I.
2011
High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech.
43, 353–375.
Sreenivasan, K. R.
1989
The turbulent boundary layer. In Frontiers in Experimental Fluid Mechanics, pp. 159–209. Springer.
Sreenivasan, K. R. & Sahay, A.
1997
The persistence of viscous effects in the overlap region, and the mean velocity in turbulent pipe and channel flows. In Self-Sustaining Mechanisms of Wall Turbulence (ed. Panton, R.), Advances in Fluid Mechanics, vol. 15, pp. 253–272. Computational Mechanics Publications, Southampton, UK.
Tsuji, Y.
1999
Peak position of dissipation spectrum in turbulent boundary layers. Phys. Rev. E
59 (6), 7235.
Vallikivi, M., Hultmark, M. & Smits, A. J.
2015
Turbulent boundary layer statistics at very high Reynolds number. J. Fluid Mech.
779, 371–389.
Vincenti, P., Klewicki, J., Morrill-Winter, C., White, C. M. & Wosnik, M.
2013
Streamwise velocity statistics in turbulent boundary layers that spatially develop to high Reynolds number. Exp. Fluids
54 (12), 1629.
Wei, T., Fife, P., Klewicki, J. & McMurtry, P.
2005
Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J. Fluid Mech.
522, 303–327.
Wei, T. & Willmarth, W. W.
1989
Reynolds-number effects on the structure of a turbulent channel flow. J. Fluid Mech.
204, 57–95.
Wosnik, M., Castillo, L. & George, W. K.
2000
A theory for turbulent pipe and channel flows. J. Fluid Mech.
421, 115–145.
Wu, X. & Moin, P.
2009
Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech.
630, 5–41.
Zanoun, E.-S., Nagib, H. & Durst, F.
2009
Refined cf relation for turbulent channels and consequences for high-Re experiments. Fluid Dyn. Res.
41 (2), 021405.