Skip to main content Accessibility help

The instability nature of the Vogel–Escudier flow

  • Miguel A. Herrada (a1), Vladimir N. Shtern (a2) and M. M. Torregrosa (a1)


The instability of the steady axisymmetric flow in a sealed elongated cylinder, driven by a rotating end disk, is studied with the help of numerical simulations. It is argued that this instability is of the shear-layer type, being caused by the presence of an inflection point in the radial distribution of axial velocity of the base circulatory flow. The disturbance kinetic energy is localized in both the radial and axial directions, reaching its peak near the rotating disk, where the magnitude of base-flow axial velocity is close to its maximum. The critical Reynolds number, $\mathit{Re}_{cr}$ , is found to be nearly $h$ -independent for $h>5$ ; $h$ is the cylinder length-to-radius ratio. It is shown that the sidewall co-rotation suppresses the instability. As the co-rotation increases, the centrifugal instability becomes the most dangerous, i.e. determines $\mathit{Re}_{cr}$ . Physical explanations are given for the stabilizing effect of the co-rotation, which is stronger (weaker) for the shear-layer (centrifugal) instability.


Corresponding author

Email address for correspondence:


Hide All
Benjamin, T. B. 1962 Theory of vortex breakdown phenomenon. J. Fluid Mech. 14, 593629.
Bödewadt, U. T. 1940 Die Drehströmung über festem Grund. Z. Angew. Math. Mech. 20, 241253.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Dover.
Escudier, M. P. 1984 Observation of the flow produced in a cylindrical container by a rotating endwall. Exp. Fluids 2, 189196.
Escudier, M. P. 1988 Vortex breakdown: observations and explanations. Prog. Aerosp. Sci. 25, 189229.
Gelfgat, A. Yu., Bar-Yoseph, P. Z. & Solan, A. 1996 Stability of confined swirling flow with and without vortex breakdown. J. Fluid Mech. 311, 136.
Gelfgat, A. Yu., Bar-Yoseph, P. Z. & Solan, A. 2001 Three-dimensional instabilities of axisymmetric flow in a rotating lid-cylinder enclosure. J. Fluid Mech. 438, 363377.
Hall, M. G. 1972 Vortex breakdown. Annu. Rev. Fluid Mech. 4, 125218.
Herrada, M. A., Pérez-Saborid, M. & Barrero, A. 2004 Nonparallel local spatial stability analysis of pipe entrance swirling flows. Phys. Fluids 16, 21472153.
Hills, C. P. 2001 Eddies induced in cylindrical containers by a rotating end wall. Phys. Fluids 13, 22792286.
Husain, H., Shtern, V. & Hussain, F. 2003 Control of vortex breakdown by addition of near-axis swirl. Phys. Fluids 15, 271279.
Iwatsu, R. 2005 Vortex breakdown flows in cylindrical geometry. Notes Numer. Fluid Mech. Multidiscip. Des. 90, 141151.
von Kármán, T. 1921 Über laminare und turbulent reibung. Z. Angew. Math. Mech. 1, 233252.
Kulikov, D. V., Mikkelsen, R., Naumov, I. V. & Okulov, V. L. 2014 Diagnostics of bubble-mode vortex breakdown in swirling flow in a large-aspect-ratio cylinder. Tech. Phys. Lett. 40 (2), 181184.
Lambourne, N. C. & Brayer, D. W.1961 The bursting of leading edge vortices – some observations and discussion of the phenomenon. Aero. Res. Counc. R & M 3282.
Leibovich, S. 1984 Vortex stability and breakdown: survey and extention. AIAA J. 22, 11921206.
Lopez, J. M. 1990 Axisymmetric vortex breakdown. Part 1. Confined swirling flow. J. Fluid Mech. 221, 533552.
Lopez, J. M. 2006 Rotating and modulated rotating waves in transitions of an enclosed swirling flow. J. Fluid Mech. 553, 323346.
Mununga, L., Lo Jacono, D., Sørensen, J. N., Leweke, T., Thompson, M. C. & Hourigan, K. 2014 Control of confined vortex breakdown with partial rotating lids. J. Fluid Mech. 738, 533.
Olendraru, C., Sellier, A., Rossi, M. & Huerre, P. 1996 Absolute/convective instability of the Batchelor vortex. C. R. Acad. Sci. Paris 11b, 153159.
Shankar, P. N. 1998 Three-dimensional Stokes flow in a cylindrical container. Phys. Fluids 10, 540549.
Shtern, V. 2012 Counterflows. Cambridge University Press.
Shtern, V. & Borissov, A. 2010a Counter-flow driven by swirl decay. Phys. Fluids 22, 063601.
Shtern, V. & Borissov, A. 2010b Nature of counterflow and circulation in vortex separators. Phys. Fluids 22, 083601.
Shtern, V. N., Torregrosa, M. M. & Herrada, M. A. 2011a Development of a swirling double counterflow. Phys. Rev. E 83, 056322.
Shtern, V. N., Torregrosa, M. M. & Herrada, M. A. 2011b Development of colliding counterflows. Phys. Rev. E 84, 046306.
Shtern, V. N., Torregrosa, M. M. & Herrada, M. A. 2012 Effect of swirl decay on vortex breakdown in a confined steady axisymmetric flow. Phys. Fluids 24, 043601.
Sorensen, J. N., Gelfgat, A. Y., Naumov, I. V. & Mikkelsen, R. 2009 Experimental and numerical results on the three-dimensional instabilities in a rotating disk-tall cylinder flow. Phys. Fluids 21, 054102.
Sorensen, J. N., Naumov, I. V. & Mikkelsen, R. 2006 Experimental investigation in three-dimensional flow instabilities in a rotating lid-driven cavity. Exp. Fluids 41, 425440.
Sorensen, J. N., Naumov, I. V. & Okulov, V. L. 2011 Multiple helical modes of vortex breakdown. J. Fluid Mech. 683, 430441.
Trigub, V. N. 1985 The problem of breakdown of a vortex line. Z. Angew. Math. Mech. 95, 166171.
Vogel, H. U.1968 Experimentelle Ergebnisse über die laminare Strömung in einem Zylindrischen Gehäuse mit darin rotierender Scheibe. Max-Planck-Institut für Strömungsforschung, Göttigen, Bericht 6.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed