Skip to main content Accessibility help
×
Home

Influence of permeable beds on hydraulically macro-rough flow

  • Hongwei Fang (a1), Xu Han (a1), Guojian He (a1) and Subhasish Dey (a2)

Abstract

In this study, macro-rough flows over beds with different permeability values are simulated using the large-eddy simulation, and the results are analysed by applying the double-averaging (DA) methodology. Spheres of different sizes and arrangements were used to form the beds, which are deemed to be permeable granular beds. The influence of bed permeability on the turbulence dynamics and structure is investigated. It was observed that the scales of the spanwise vortical structures over more permeable beds are larger than those over less permeable beds. This is attributed to large-scale spanwise-alternate strips of varying Reynolds shear stress (RSS), emerging from the surface of macro-rough elements for the permeable beds. The DA stress balance suggests that the time-averaged spanwise vortical structure leads to a damping in DA RSS and an unusual peak of the form-induced stress in the main flow. In the streamwise direction, both large turbulent structures that originate from the Kelvin–Helmholtz-type instability and small turbulent structures that are associated with the turbulent transport across the gaps of the roughness elements are more prevalent over highly permeable beds. Near the bed, the relative magnitude of turbulent events shows a transition from a ejections-dominating to sweeps-dominating zone with vertical distance. Further, several hydrodynamic characteristics normalized by inner scales (kinematic viscosity to shear velocity ratio) show a greater dependency on permeability Reynolds number than those normalized by sediment size. The study provides an insight into the mechanism of mass transfer near the fluid–particle interface, which is vital to benthic and aquatic ecology.

Copyright

Corresponding author

Email address for correspondence: heguojian@tsinghua.edu.cn

References

Hide All
Amir, M., Nikora, V. I. & Stewart, M. T. 2014 Pressure forces on sediment particles in turbulent open-channel flow: a laboratory study. J. Fluid Mech. 757, 458497.
Anderson, W., Barros, J. M., Christensen, K. T. & Awasthi, A. 2015 Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech. 768, 316347.
Beavers, G. S. & Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197207.
Bomminayuni, S. & Stoesser, T. 2011 Turbulence statistics in an open-channel flow over a rough bed. J. Hydraul. Engng 137 (11), 13471358.
Boudreau, B. P. 2001 Solute transport above the sediment–water interface. In The Benthic Boundary Layer: Transport Processes and Biogeochemistry (ed. Boudreau, B. P. & Jorgensen, B. B.), pp. 104126. Oxford University Press.
Breuer, M. A. & Rodi, W. 1994 Large-eddy simulation of turbulent flow through a straight square duct and a 180° bend. In Direct and Large-Eddy Simulation I (ed. Voke, P. R., Kleiser, L. & Chollet, J. P.), pp. 273285. Kluwer.
Breugem, W. P., Boersma, B. J. & Uittenbogaard, R. E. 2006 The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 3572.
Calmet, I. & Magnaudet, J. 1997 Large-eddy simulation of high-Schmidt number mass transfer in a turbulent channel flow. Phys. Fluids 9 (2), 438455.
Castro, I. P., Cheng, H. & Reynolds, R. 2006 Turbulence over urban-type roughness: decutions from with tunnel measurements. Boundary-Layer Meteorol. 118 (1), 109131.
Chaitanya, D. G. & Sourabh, V. A. 2016 DNS study of particle-bed-turbulence interactions in an oscillatory wall-bounded flow. J. Fluid Mech. 792, 232251.
Clifton, A., Manes, C., Rüedi, J. D., Guala, M. & Lehning, M. 2008 On shear-driven ventilation of snow. Boundary-Layer Meteorol. 126 (2), 249261.
Coceal, O., Dobre, A., Thomas, T. G. & Belcher, S. E. 2007 Structure of turbulent flow over regular arrays of cubical roughness. J. Fluid Mech. 589, 375409.
Coleman, S. E., Nikora, V. I., McLean, S. R. & Schlicke, E. 2007 Spatially averaged turbulent flow over square ribs. J. Engng Mech. 133 (2), 194204.
Defina, A. 1996 Transverse spacing of low-speed streaks in a channel flow over a rough bed. In Coherent Flow Structures in Open Channels (ed. Ashworth, P. J., Bennett, S. J., Best, J. L. & McLelland, S. J.), pp. 8799. Wiley.
Dey, S. & Das, R. 2012 Gravel-bed hydrodynamics: double-averaging approach. J. Hydraul. Engng 138 (8), 707725.
Dey, S. & Raikar, R. V. 2007 Characteristics of loose rough boundary streams at near-threshold. J. Hydraul. Engng 133 (3), 288304.
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
Dybbs, A. & Edwards, R. 1984 A new look at porous media fluid mechanics – Darcy to turbulent. In Fundamentals of Transport Phenomena in Porous Media (ed. Bear, J. & Corapcioglu, M. Y.), pp. 199256. Martinus Nijhoff Publishers.
Fang, H., Bai, J., He, G. & Zhao, H. 2014 Calculations of nonsubmerged groin flow in a shallow open channel by large-eddy simulation. J. Engng Mech. 140 (5), 04014016.
Ferraro, D., Servidio, S., Carbone, V., Dey, S. & Gaudio, R. 2016 Turbulence laws in natural bed flows. J. Fluid Mech. 798, 540591.
Fröhlich, J. & Rodi, W. 2002 Introduction to large eddy simulation of turbulent flows. In Closure Strategies for Turbulent and Transitional Flows (ed. Launder, B. E. & Sandham, N. D.), pp. 197224. Cambridge University Press.
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3 (7), 17601765.
Ghisalberti, M. & Nepf, H. M. 2002 Mixing layers and coherent structures in vegetated aquatic flows. J. Geophys. Res. 107 (C2), doi:10.1029/2001JC000871.
Giménez-Curto, L. A. & Corniero, M. A. 2002 Flow characteristics in the interfacial shear layer between a fluid and a granular bed. J. Geophys. Res. 107 (C5), 3044, doi:10.1029/2000JC000729.
Goharzadeh, A., Khalili, A. & Jørgensen, B. B. 2005 Transition layer thickness at a fluidporous interface. Phys. Fluids 17 (5), 057102.
Goyeau, B., Lhuillier, D., Gobin, D. & Velarde, M. G. 2003 Momentum transport at a fluid-porous interface. Intl J. Heat Mass Transfer 46 (21), 40714081.
Grass, A. J., Stuart, R. J. & Mansour-Tehrani, M. 1991 Vortical structures and coherent motion in turbulent flow over smooth and rough boundaries. Phil. Trans. R. Soc. Lond. A 336 (1640), 3365.
Hahn, S., Je, J. & Choi, H. 2002 Direct numerical simulation of turbulent channel flow with permeable walls. J. Fluid Mech. 450, 259285.
Han, X., He, G. & Fang, H. 2017 Double-averaging analysis of turbulent kinetic energy fluxes and budget based on large-eddy simulation. J. Hydrodyn. 29 (4), 567574.
Horton, N. A. & Pokrajac, D. 2009 Onset of turbulence in a regular porous medium: an experimental study. Phys. Fluids 21 (4), 045104.
Jackson, P. S. 1981 On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 1525.
Jimenez, J., Uhlmann, M., Pinelli, A. & Kawahara, G. 2001 Turbulent shear flow over active and passive porous surfaces. J. Fluid Mech. 442, 89117.
Khosronejad, A. & Sotiropoulos, F. 2014 Numerical simulation of sand waves in a turbulent open channel flow. J. Fluid Mech. 753, 150216.
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.
Kironoto, B. A. & Graf, W. H. 1994 Turbulence characteristics in rough uniform open-channel flow. Proc. Inst. Civ. Engrs Wat., Marit. Energy 106 (4), 333334.
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299303.
Kong, F. Y. & Schetz, J. A.1982 Turbulent boundary layer over porous surfaces with different surface geometries. In AIAA Paper 82-0030, 1–10.
Krogstad, P. Å. & Antonia, R. A. 1999 Surface roughness effects in turbulent boundary layers. Exp. Fluids 27 (5), 450460.
Kuwata, Y. & Suga, K. 2016 Lattice Boltzmann direct numerical simulation of interface turbulence over porous and rough walls. Intl J. Heat Fluid Flow 61 (October), 145157.
Liu, Q. & Prosperetti, A. 2011 Pressure-driven flow in a channel with porous walls. J. Fluid Mech. 679, 77100.
Lopez, F. & Garcia, M. H. 1999 Wall similarity in turbulent open channel flow. J. Engng Mech. 125 (7), 789796.
Lu, S. S. & Willmarth, W. W. 1973 Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60, 481511.
Manes, C., Poggi, D. & Ridolfi, L. 2011 Turbulent boundary layers over permeable walls: scaling and near-wall structure. J. Fluid Mech. 687, 141170.
Manes, C., Pokrajac, D. & McEwan, I. 2007 Double-averaged open-channel flows with small relative submergence. J. Hydraul. Engng 133 (8), 896904.
Manes, C., Pokrajac, D., McEwan, I. & Nikora, V. 2009 Turbulence structure of open channel flows over permeable and impermeable beds: a comparative study. Phys. Fluids 21 (12), 125109.
Mignot, E., Barthelemy, E. & Hurther, D. 2009a Double-averaging analysis and local flow characterization of near-bed turbulence in gravel-bed channel flows. J. Fluid Mech. 618 (January), 279303.
Mignot, E., Hurther, D. & Barthelemy, E. 2009b On the structure of shear stress and turbulent kinetic energy flux across the roughness layer of a gravel-bed channel flow. J. Fluid Mech. 638 (November), 423452.
Nezu, I. 2005 Open-channel flow turbulence and its research prospect in the 21st century. J. Hydraul. Engng 131 (4), 229246.
Nezu, I. & Nakagawa, H. 1993 Turbulence in Open-Channel Flows. A. A. Balkema.
Nikora, V. & Goring, D. 2000 Flow turbulence over fixed and weakly mobile gravel beds. J. Hydraul. Engng 126 (9), 679690.
Nikora, V., Goring, D., McEwan, I. & Griffiths, G. 2001 Spatially averaged open-channel flow over rough bed. J. Hydraul. Engng 127 (2), 123133.
Nikora, V., McEwan, I., McLean, S., Coleman, S., Pokrajac, D. & Walters, R. 2007a Double-averaging concept for rough-bed open-channel and overland flows: theoretical background. J. Hydraul. Engng 133 (8), 873883.
Nikora, V., McLean, S., Coleman, S., Pokrajac, D., McEwan, I., Campbell, L., Aberle, J., Clunie, D. & Koll, K. 2007b Double-averaging concept for rough-bed open-channel and overland flows: applications. J. Hydraul. Engng 133 (8), 884895.
Nikora, V. I. & Smart, G. M. 1997 Turbulence characteristics of New Zealand gravel-bed rivers. J. Hydraul. Engng 123 (9), 764773.
Peskin, C. S. 1972 Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10 (2), 252271.
Pokrajac, D., Campbell, L. J., Nikora, V., Manes, C. & McEwan, I. 2007 Quadrant analysis of persistent spatial velocity perturbations over square-bar roughness. Exp. Fluids 42 (3), 413423.
Raupach, M. R., Antonio, R. A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 125.
Rosgen, D. L. 1994 A classification of natural rivers. Catena 22 (3), 169199.
Sarkar, S. & Dey, S. 2010 Double-averaging turbulence characteristics in flows over a gravel-bed. J. Hydraul. Res. 48 (6), 801809.
Sarkar, S., Papanicolaou, A. N. & Dey, S. 2016 Turbulence in gravel-bed stream with an array of large gravel obstacles. J. Hydraul. Engng 142 (11), 04016052.
Singh, K. M., Sandham, N. D. & Williams, J. J. R. 2007 Numerical simulation of flow over a rough bed. J. Hydraul. Engng 133 (4), 386398.
Smart, G. M. & Habersack, H. M. 2007 Pressure fluctuations and gravel entrainment in rivers. J. Hydraul. Res. 45 (5), 661673.
Song, T. & Graf, W. H. 1994 Nonuniform open-channel flow over a rough bed. J. Hydrosci. Hydraul. Engng 12 (1), 125.
Suga, K. 2016 Understanding and modelling turbulence over and inside porous media. Flow Turbul. Combust. 96 (3), 717756.
Suga, K., Matsumura, Y., Ashitaka, Y., Tominaga, S. & Kaneda, M. 2010 Effects of wall permeability on turbulence. Intl J. Heat Fluid Flow 31 (6), 974984.
Suga, K., Mori, M. & Kaneda, M. 2011 Vortex structure of turbulence over permeable walls. Intl J. Heat Fluid Flow 32 (3), 586595.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.
Vanderwel, C. & Ganapathisubramani, B. 2015 Effects of spanwise spacing on large-scale secondary flows in rough-wall turbulent boundary layers. J. Fluid Mech. 774, R2.
Voermans, J. J., Ghisalberti, M. & Ivey, G. N. 2017 The variation of flow and turbulence across the sediment–water interface. J. Fluid Mech. 824, 413437.
Whitaker, S. 1996 The Forchheimer equation: a theoretical development. Transp. Porous Med. 25 (1), 2761.
Wilson, A. M., Huettel, M. & Klein, S. 2008 Grain size and depositional environment as predictors of permeability in coastal marine sands. Estuar. Coast. Shelf Sci. 80 (1), 193199.
Wilson, N. R. & Shaw, R. H. 1977 A higher order closure model for canopy flow. J. Appl. Meteorol. 16 (11), 11971205.
Yuan, J. & Piomelli, U. 2014 Roughness effects on the Reynolds stress budgets in near-wall turbulence. J. Fluid Mech. 760, R1.
Zagni, A. F. E. & Smith, K. V. H. 1976 Channel flow over permeable beds of graded spheres. J. Hydraul. Div. 102 (2), 207222.
Zippe, H. J. & Graf, W. H. 1983 Turbulent boundary-layer flow over permeable and non-permeable rough surfaces. J. Hydraul. Res. 21 (1), 5165.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed