Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T12:26:25.664Z Has data issue: false hasContentIssue false

Inertial migration of a sphere in plane Couette flow

Published online by Cambridge University Press:  19 December 2023

Prateek Anand
Affiliation:
International Centre for Theoretical Sciences, Bengaluru 560089, India
Ganesh Subramanian*
Affiliation:
Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
*
Email address for correspondence: sganesh@jncasr.ac.in

Abstract

We study the inertial migration of a torque-free neutrally buoyant sphere in wall-bounded plane Couette flow over a wide range of channel Reynolds numbers $Re_c$ in the limit of small particle Reynolds number ($Re_p\ll 1$) and confinement ratio ($\lambda \ll 1$). Here, $Re_c = V_{wall}H/\nu$, where $H$ denotes the separation between the channel walls, $V_\text {wall}$ denotes the speed of the moving wall, and $\nu$ is the kinematic viscosity of the Newtonian suspending fluid. Also, $\lambda = a/H$, where $a$ is the sphere radius, with $Re_p=\lambda ^2 Re_c$. The channel centreline is found to be the only (stable) equilibrium below a critical $Re_c$ ($\approx 148$), consistent with the predictions of earlier small-$Re_c$ analyses. A supercritical pitchfork bifurcation at the critical $Re_c$ creates a pair of stable off-centre equilibria, located symmetrically with respect to the centreline, with the original centreline equilibrium becoming unstable simultaneously. The new equilibria migrate wall-ward with increasing $Re_c$. In contrast to the inference based on recent computations, the aforementioned bifurcation occurs for arbitrarily small $Re_p$ provided that $\lambda$ is sufficiently small. An analogous bifurcation occurs in the two-dimensional scenario, that is, for a circular cylinder suspended freely in plane Couette flow, with the critical $Re_c$ being approximately $110$.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, P. & Subramanian, G. 2023 a Inertial migration in pressure-driven channel flow: beyond the Segre–Silberberg pinch. arXiv:2301.00789.Google Scholar
Anand, P. & Subramanian, G. 2023 b Inertial migration of a neutrally buoyant spheroid in plane Poiseuille flow. J. Fluid Mech. 974, A39.Google Scholar
Asmolov, E.S. 1999 The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 381, 6387.Google Scholar
Bottin, S. & Chaté, H. 1998 Statistical analysis of the transition to turbulence in plane Couette flow. Eur. Phys. J. B 6 (1), 143155.Google Scholar
Cherukat, P. & Mclaughlin, J.B. 1994 The inertial lift on a rigid sphere in a linear shear flow field near a flat wall. J. Fluid Mech. 263, 118.Google Scholar
Cox, R.G. & Brenner, H. 1968 The lateral migration of solid particles in Poiseuille flow – I. Theory. Chem. Engng Sci. 23 (2), 147173.Google Scholar
Dabade, V., Marath, N.K. & Subramanian, G. 2016 The effect of inertia on the orientation dynamics of anisotropic particles in simple shear flow. J. Fluid Mech. 791, 631703.Google Scholar
Dauchot, O. & Daviaud, F. 1995 Finite amplitude perturbation and spots growth mechanism in plane Couette flow. Phys. Fluids 7 (2), 335343.Google Scholar
Feng, J., Hu, H.H. & Joseph, D.D. 1994 Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows. J. Fluid Mech. 277, 271301.Google Scholar
Fox, A.J., Schneider, J.W. & Khair, A.S. 2020 Inertial bifurcation of the equilibrium position of a neutrally-buoyant circular cylinder in shear flow between parallel walls. Phys. Rev. Res. 2 (1), 013009.Google Scholar
Fox, A.J., Schneider, J.W. & Khair, A.S. 2021 Dynamics of a sphere in inertial shear flow between parallel walls. J. Fluid Mech. 915, A119.Google Scholar
Ho, B.P. & Leal, L.G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65 (2), 365400.Google Scholar
Hogg, A.J. 1994 The inertial migration of non-neutrally buoyant spherical particles in two-dimensional shear flows. J. Fluid Mech. 272, 285318.Google Scholar
Lemoult, G., Shi, L., Avila, K., Jalikop, S.V., Avila, M. & Hof, B. 2016 Directed percolation phase transition to sustained turbulence in Couette flow. Nat. Phys. 12 (3), 254258.Google Scholar
Lundbladh, A. & Johansson, A.V. 1991 Direct simulation of turbulent spots in plane Couette flow. J. Fluid Mech. 229, 499516.Google Scholar
Marath, N.K., Dwivedi, R. & Subramanian, G. 2017 An orientational order transition in a sheared suspension of anisotropic particles. J. Fluid Mech. 811, R3.Google Scholar
Marath, N.K. & Subramanian, G. 2017 The effect of inertia on the time period of rotation of an anisotropic particle in simple shear flow. J. Fluid Mech. 830, 165210.Google Scholar
Marath, N.K. & Subramanian, G. 2018 The inertial orientation dynamics of anisotropic particles in planar linear flows. J. Fluid Mech. 844, 357402.Google Scholar
Matas, J.-P., Morris, J.F. & Guazzelli, É. 2004 Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515, 171195.Google Scholar
McLaughlin, J.B. 1991 Inertial migration of a small sphere in linear shear flows. J. Fluid Mech. 224, 261274.Google Scholar
Nakayama, S., Yamashita, H., Yabu, T., Itano, T. & Sugihara-Seki, M. 2019 Three regimes of inertial focusing for spherical particles suspended in circular tube flows. J. Fluid Mech. 871, 952969.Google Scholar
Proudman, I. & Pearson, J.R.A. 1957 Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2 (3), 237262.Google Scholar
Saffman, P.G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22 (2), 385400.Google Scholar
Schmid, P.J., Henningson, D.S. & Jankowski, D.F. 2002 Stability and Transition in Shear Flows. Applied Mathematical Sciences, vol. 142. Springer.Google Scholar
Schonberg, J.A. & Hinch, E.J. 1989 Inertial migration of a sphere in Poiseuille flow. J. Fluid Mech. 203, 517524.Google Scholar
Segre, G. & Silberberg, A. 1962 a Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J. Fluid Mech. 14 (1), 115135.Google Scholar
Segre, G. & Silberberg, A. 1962 b Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation. J. Fluid Mech. 14 (1), 136157.Google Scholar
Swan, J.W. & Brady, J.F. 2010 Particle motion between parallel walls: hydrodynamics and simulation. Phys. Fluids 22 (10), 103301.Google Scholar
Tillmark, N. & Alfredsson, P.H. 1992 Experiments on transition in plane Couette flow. J. Fluid Mech. 235, 89102.Google Scholar
Vasseur, P. & Cox, R.G. 1976 The lateral migration of a spherical particle in two-dimensional shear flows. J. Fluid Mech. 78 (2), 385413.Google Scholar
Wang, G., Abbas, M. & Climent, É. 2017 Modulation of large-scale structures by neutrally buoyant and inertial finite-size particles in turbulent Couette flow. Phys. Rev. Fluids 2 (8), 084302.Google Scholar