Skip to main content Accessibility help
×
Home

Image-based modelling of the skin-friction coefficient in compressible boundary-layer transition

  • Wenjie Zheng (a1), Shanxin Ruan (a1), Yue Yang (a1) (a2), Lin He (a3) and Shiyi Chen (a1) (a2) (a4)...

Abstract

We develop a model of the skin-friction coefficient based on scalar images in the compressible, spatially evolving boundary-layer transition. The images are extracted from a passive scalar field by a sliding window filter on the streamwise and wall-normal plane. The multi-scale and multi-directional geometric analysis is applied to characterize the averaged inclination angle of spatially evolving filtered component fields at different scales ranging from a boundary-layer thickness to several viscous length scales. In general, the averaged inclination angles increase along the streamwise direction, and the variation of the angles for large-scale structures is smaller than that for small-scale structures. Inspired by the coincidence of the increasing averaged inclination angle and the rise of the skin-friction coefficient, we propose a simple image-based model of the skin-friction coefficient. The model blends empirical formulae of the skin-friction coefficient in laminar and fully developed turbulent regions using the normalized averaged inclination angle of scalar structures at intermediate and small scales. The model prediction calculated from scalar images is validated by the results from the direct numerical simulation at two Mach numbers, 2.25 and 6, and the relative error can be less than 15 %.

Copyright

Corresponding author

Email address for correspondence: yyg@pku.edu.cn

References

Hide All
Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.10.1063/1.2717527
Anderson, J. D. 2010 Fundamentals of Aerodynamics, 4th edn. McGraw-Hill.
Candes, E., Demanet, L., Donoho, D. & Ying, L. 2006 Fast discrete curvelet transforms. Multiscale Model. Simul. 5, 861899.10.1137/05064182X
Dhawan, S. & Narasimha, R. 1958 Some properties of boundary layer flow during the transition from laminar to turbulent motion. J. Fluid Mech. 3, 418436.10.1017/S0022112058000094
van Driest, E. R.1952 Investigation of laminar boundary layer in compressible fluids using the Crocco method. NACA Tech. Note 2597.
van Driest, E. R. 1956 The problem of aerodynamic heating. Aeronaut. Engng Rev. 15, 2641.
Duan, L., Beekman, I. & Martin, M. P. 2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419445.10.1017/S0022112010000959
Duan, L., Beekman, I. & Martin, M. P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672, 245267.10.1017/S0022112010005902
Ducros, F., Comte, P. & Lesieur, M. 1996 Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid Mech. 326, 136.
Duraisamy, K., Iaccarino, G. & Xiao, H. 2019 Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51, 357377.10.1146/annurev-fluid-010518-040547
Durbin, P. A. 2018 Some recent developments in turbulence closure modeling. Annu. Rev. Fluid Mech. 50, 77103.10.1146/annurev-fluid-122316-045020
Emmons, H. W. 1951 The laminar-turbulent transition in a boundary layer – Part I. J. Aero. Sci. 18, 490498.
Falco, R. E. 1977 Coherent motions in the outer region of turbulent boundary layers. Phys. Fluids 20, S124.10.1063/1.861721
Franko, K. J. & Lele, S. K. 2013 Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers. J. Fluid Mech. 730, 491532.10.1017/jfm.2013.350
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L7376.10.1063/1.1516779
Gao, H., Fu, D.-X., Ma, Y.-W. & Li, X.-L. 2005 Direct numerical simulation of supersonic turbulent boundary layer flow. Chin. Phys. Lett. 22, 17091712.
Gomez, T., Flutet, V. & Sagaut, P. 2009 Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows. Phys. Rev. E 79, 035301.
Goyne, C. P., Stalker, R. J. & Paull, A. 2003 Skin-friction measurements in high-enthalpy hypersonic boundary layers. J. Fluid Mech. 485, 132.10.1017/S0022112003003975
Hakkinen, R. J. 2004 Reflections on fifty years of skin friction measurement. In Proceedings of the 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. AIAA.
He, L., Yi, S., Zhao, Y., Tian, L. & Chen, Z. 2011a Experimental study of a supersonic turbulent boundary layer using PIV. Sci. China Phys. Mech. Astron. 54, 17021709.10.1007/s11433-011-4446-2
He, L., Yi, S., Zhao, Y., Tian, L. & Chen, Z. 2011b Visualization of coherent structures in a supersonic flat-plate boundary layer. Chinese Sci. Bull. 56, 489494.10.1007/s11434-010-4312-z
Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.10.1017/S0022112081001791
Herbert, T. 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29, 245283.10.1146/annurev.fluid.29.1.245
Holden, M. S.1972 An experimental investigation of turbulent boundary layers at high Mach number and Reynolds numbers. NASA Tech. Rep. CR–112147.
Hutchins, N. & Choi, K.-S. 2002 Accurate measurements of local skin friction coefficient using hot-wire anemometry. Prog. Aerosp. Sci. 38, 421446.10.1016/S0376-0421(02)00027-1
Jiang, G.-S. & Shu, C.-W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202228.10.1006/jcph.1996.0130
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.10.1017/S0022112067001740
Lee, C. B. & Wu, J. Z. 2008 Transition in wall-bounded flows. Appl. Mech. Rev. 61, 030802.
Li, X., Fu, D. & Ma, Y. 2010 Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack. Phys. Fluids 22, 025105.10.1063/1.3313933
Marusic, I. & Monty, J. P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51, 4974.10.1146/annurev-fluid-010518-040427
Menter, F. R., Langtry, R. & Völker, S. 2006 Transition modelling for general purpose CFD codes. Flow Turbul. Combust. 77, 277303.10.1007/s10494-006-9047-1
Mishra, M., Liu, X., Skote, M. & Fu, C. W. 2014 Kolmogorov spectrum consistent optimization for multi-scale flow decomposition. Phys. Fluids 26, 055106.10.1063/1.4871106
Perry, A. E. & Chong, M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.10.1017/S0022112082001311
Pirozzoli, S., Grasso, F. & Gatski, T. B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2. 25. Phys. Fluids 16, 530.10.1063/1.1637604
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.10.1146/annurev.fl.23.010191.003125
Rodriguez-Lopez, E., Bruce, P. J. K. & Buxton, O. R. H. 2015 A robust post-processing method to determine skin friction in turbulent boundary layers from the velocity profile. Exp. Fluids 56, 68.10.1007/s00348-015-1935-5
Sayadi, T., Schmid, P. J., Nichols, J. W. & Moin, P. 2014 Reduced-order representation of near-wall structures in the late transitional boundary layer. J. Fluid Mech. 748, 278301.10.1017/jfm.2014.184
Schetz, J. A. 2010 Direct measurement of skin friction in complex flows. In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA.
Smith, M. W. & Smits, A. J. 1995 Visualization of the structure of supersonic turbulent boundary layers. Exp. Fluids 18, 288302.10.1007/BF00195099
Spalding, D. B. & Chi, S. W. 1964 The drag of a compressible turbulent boundary layer on a smooth flat plate with and without heat transfer. J. Fluid Mech. 18, 117143.10.1017/S0022112064000088
Spina, E. F., Donovan, J. F. & Smits, A. J. 1991 On the structure of high-Reynolds-number supersonic turbulent boundary layers. J. Fluid Mech. 222, 293327.10.1017/S0022112091001118
Suzen, Y. B. & Huang, P. G. 2000 Modeling of flow transition using an intermittency transport equation. Trans. ASME J. Fluids Engng 122, 273284.10.1115/1.483255
Tay, C. M. J., Khoo, B. C. & Chew, Y. T. 2012 Determination of hot-wire position from a solid wall in an opaque channel. Meas. Sci. Technol. 23, 085305.10.1088/0957-0233/23/8/085305
Tian, L., Yi, S., Zhao, Y., He, L. & Cheng, Z. 2009 Study of density field measurement based on NPLS technique in supersonic flow. Sci. China Ser. G-Phys. Mech. Astron. 52, 13571363.10.1007/s11433-009-0180-4
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Walters, D. K. & Cokljat, D. 2008 A three-equation eddy-viscosity model for Reynolds-averaged Navier–Stokes simulations of transitional flow. Trans. ASME J. Fluids Engng 130, 121401.
Wang, L. & Fu, S. 2009 Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier–Stokes approach. Sci. China Ser. G-Phys. Mech. Astron. 52, 768774.10.1007/s11433-009-0047-8
Wang, L. & Lu, X.-Y. 2012 Flow topology in compressible turbulent boundary layer. J. Fluid Mech. 703, 255278.10.1017/jfm.2012.212
Wang, Q.-C., Wang, Z.-G., Sun, M.-B., Yang, R., Zhao, Y.-X. & Hu, Z. 2019 The amplification of large-scale motion in a supersonic concave turbulent boundary layer and its impact on the mean and statistical properties. J. Fluid Mech. 863, 454493.10.1017/jfm.2018.1004
Wang, Q.-C., Wang, Z.-G. & Zhao, Y.-X. 2016 Structural responses of the supersonic turbulent boundary layer to expansions. Appl. Phys. Lett. 109, 124104.
White, F. M. 2006 Viscous Fluid Flow, 3rd edn. McGraw-Hill.
White, F. M. & Christoph, G. H. 1972 A simple theory for the two-dimensional compressible turbulent boundary layer. Trans. ASME J. Basic Engng 94, 636642.10.1115/1.3425519
Yang, Y. & Pullin, D. I. 2010 On Lagrangian and vortex-surface fields for flows with Taylor–Green and Kida–Pelz initial conditions. J. Fluid Mech. 661, 446481.10.1017/S0022112010003125
Yang, Y. & Pullin, D. I. 2011 Geometric study of Lagrangian and Eulerian structures in turbulent channel flow. J. Fluid Mech. 674, 6792.10.1017/S0022112010006427
Yang, Y., Pullin, D. I. & Bermejo-Moreno, I. 2010 Multi-scale geometric analysis of Lagrangian structures in isotropic turbulence. J. Fluid Mech. 654, 233270.10.1017/S0022112010000571
Zhang, C., Duan, L. & Choudhari, M. M. 2017 Effect of wall cooling on boundary-layer-induced pressure fluctuations at Mach 6. J. Fluid Mech. 822, 530.10.1017/jfm.2017.212
Zhang, Y.-S., Bi, W.-T., Hussain, F. & She, Z.-S. 2014 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.10.1017/jfm.2013.620
Zhao, Y., Xia, Z., Shi, Y., Xiao, Z. & Chen, S. 2014 Constrained large-eddy simulation of laminar-turbulent transition in channel flow. Phys. Fluids 26, 095103.10.1063/1.4895589
Zhao, Y., Xiong, S., Yang, Y. & Chen, S. 2018 Sinuous distortion of vortex surfaces in the lateral growth of turbulent spots. Phys. Rev. Fluids 3, 074701.10.1103/PhysRevFluids.3.074701
Zhao, Y., Yang, Y. & Chen, S. 2016 Evolution of material surfaces in the temporal transition in channel flow. J. Fluid Mech. 793, 840876.10.1017/jfm.2016.152
Zheng, W., Yang, Y. & Chen, S. 2016 Evolutionary geometry of Lagrangian structures in a transitional boundary layer. Phys. Fluids 28, 035110.10.1063/1.4944047
Zhong, X. & Wang, X. 2012 Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers. Annu. Rev. Fluid Mech. 44, 527561.10.1146/annurev-fluid-120710-101208
Zhu, Y., Yuan, H., Zhang, C. & Lee, C. 2013 Image-preprocessing method for near-wall particle image velocimetry (PIV) image interrogation with very large in-plane displacement. Meas. Sci. Technol. 24, 125302.10.1088/0957-0233/24/12/125302
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed